فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

شبکه‌های عصبی کامپیوتر

اختصاصی از فایل هلپ شبکه‌های عصبی کامپیوتر دانلود با لینک مستقیم و پر سرعت .

شبکه‌های عصبی کامپیوتر


شبکه‌های عصبی کامپیوتر

هدف هوش مصنوعی را می توان در این جمله خلاصه کرد که می خواهد در نهایت به کامپیوترهایی دست یابد که اغلب در فیلم های سینمایی مشاهده می شود، ماشین‌های بسیار توانمند تر از انسان – هدفی که بسیار از دنیای واقعی به دوراست . دنیایی که اغلب به خاطراشتباهات فاحش کامپیوترها هزینه‌های بسیار زیادی را متحمل می شود .

مشخصات:

نوع پروژه : فایل Word   

تعداد صفحات : 96

حجم فایل پیوست : 280 KB 

فهرست

1

فصل 1 : مقدمه

1

1-1   انسان و کامپیوتر1

4

1-2 ساختار مغز

7

1-2-1   یادگیری در سیستم‌های بیولوژیک

7

1-3   تفاوت ها

10

فصل   2 : نگرش کلی به شبکه های عصبی مصنوعی

10

2-1   تعریف شبکه های عصبی

11

2-2   مفاهیم اساسی شبکه های عصبی

13

2-3   معرفی اصطلاحات و علائم قراردادی

15

2-4   کاربردهای محاسبات عصبی

16

2-5   کاربردهای نمونه شبکه های عصبی مصنوعی

17

2-6   فواید و معایب شبکه های عصبی مصنوعی

18

2-7   معیارهای مهندسی به منظور محاسبات عصبی

19

2-8   مراحل مهندسی سیستم ANN

21

2-9   توپولوژی شبکه و خصوصیات

22

فصل 3 : بازشناسی الگو

22

3-1   چشم انداز طرح شناسی

22

3-2   تعریف بازشناسی الگوها

23

3-3   بردارهای مشخصات و فضای مشخصات

24

3-4   توابع تشخیص دهنده یا ممیز

25

3-5   فنون طبقه بندی

25

3-6   روش طبقه بندی «نزدیکترین همسایه»

27

3-7   میزان های اندازه گیری فاصله

31

3-8   دستگاه های طبقه بندی خطی

38

فصل 4 : نرون پایه

38

4-1     مقدمه

38

4-2   مدل سازی نرون

42

4-3   فراگیری در نرون‌های ساده

45

4-4   الگوریتم فراگیری پرسپترون

48

4-5   یک مثال ساده برای پرسپترون ساده.

61

قصل 5 : نرون چند لایه

61

1-5   مقدمه

63

2-5  مدل جدید

64

3-5   قاعده جدید فراگیری

65

5-4   الگوریتم پرسپترون چند لایه

67

5-5   بررسی مجدد مساله XOR

70

5-6   لیه های شبکه

71

5-7   معرفی چند شبکه

71

5-8 معرفی نمونه ای از توابع کلیدی

81

5-9   بررسی یک مثال عملی


دانلود با لینک مستقیم


شبکه‌های عصبی کامپیوتر

پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

اختصاصی از فایل هلپ پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال دانلود با لینک مستقیم و پر سرعت .

پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال


پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

 

 

 

 

 

 

 

فایل:Word (قابل ویرایش و آماده پرینت) تعداد صفحه:151

چکیده

در این تحقیق به عنوان نمونه پیش‌بینی زمان‌بندی معاملات سهام 17 شرکت فعال در بورس اوراق بهادار تهران انجام شد. بدین‌صورت که ابتدا داده‌های اولیه که شامل 3 متغیر قیمت پایانی، کمترین قیمت و بیشترین قیمت سهام طی دوره زمانی 1388 تا پایان 1391 بصورت روزانه است، از سایت رسمی سازمان بورس اوراق بهادارتهران گردآوری گردید .سپس با استفاده از این داده‌ها و تعریف توابع مربوطه در نرم افزار Excel شاخص‌های قدرت نسبی((RSI، میانگین متحرک همگرا- واگرا(MACD)، میانگین متحرک ساده((SMA، نوسانگر تصادفی((SO، میانگین متحرک نمایی(EMA) و خط سیگنال(SL) محاسبه شدند. پس از گردآوری سایر داده‌ها با استفاده از رگرسیون گام به گام متغیرهای ورودی هر شبکه عصبی فازی مربوط به هر سهم شناسایی شد. در شناسایی متغیرهای موثر بر شاخص‌های تحلیل تکنیکال این نتیجه حاصل شد که شاخص‌های RSI، MACD و شاخص کل سهام در 70 درصد نمونه مورد بررسی بر RSI 14 روز آتی تاثیر داشته‌اند. از طرفی، MACD-SL در 94 درصد نمونه مورد بررسی به عنوان متغیر ورودی شبکه پیش‌بین MACD-SL 14 روز آتی درنظر گرفته شده‌است. ازمیان متغیرهای مستقل، قیمت پایانی بیشترین تکرار را (تقریبا در 76 درصد موارد) در شبکه‌های پیش‌بینSMA-P 14 روز آتی داشته است. بیشترین متغیری که به عنوان ورودی شبکه‌های پیش‌بین EMA-P و SO 14 روز آتی شناسایی گردید، نسبت قیمت به سود بوده‌است. از میان کلیه متغیرها دلار و طلا به نسبت کمتری به عنوان متغیر ورودی درنظر گرفته شده‌است. این ورودی‌ها در نرم افزار Matlab و از طریق رابط گرافیکی Anfisedit جهت آموزش و تست شبکه مورد نظر به کار گرفته شدند. به گونه‌ای که پنج شبکه ANFIS برای پیش‌بینی متغیرهای RSI ، -SL MACD، -P SMA، SO وEMA-P 14روز آتی برای هر سهم طراحی شدند. سپس با استفاده از معیار MSE و RMSE و درصد صحت پیش‌بینی عملکرد شبکه‌های ایجاد شده بررسی گردید. نتایج نشان داد که میانگین درصد صحت پیش‌بینی کلیه شبکه‌های ایجاد شده (55/96%) بیشتر از حالت تصادفی (50%) است. سپس با اعمال مقررات معاملاتی مقادیر پیش‌بینی شده به سیگنال تبدیل شدند. سپس پیشنهاد داده شد که سیگنال نهایی سیستم طراحی شده از مجموع سیگنال‌های ایجاد شده توسط 5 شاخص تکنیکال مذکور بدست آید. در مرحله بعدی جهت سنجش بازده معاملات پیشنهادی مدل ارائه با استفاده از استراتژی معاملاتی پیشنهادی تحقیق یک معامله فرضی شبیه‌سازی گردید. سپس بازده معاملات صورت گرفته بر اساس سیگنال نهایی سیستم پیشنهادی با بازده روش‌های تکنیکال و روش‌های خرید و نگهداری (در دو حالت پیش از کسر هزینه‌های معاملاتی و پس از کسر هزینه‌های معاملاتی) مقایسه گشتند. با توجه بازدهی مثبت شاخص‌های SMA، EMA، SO و روش پیشنهادی می‌توان نتیجه گرفت که می‌توان با استفاده از این شاخص‌های تحلیل تکنیکال در بازار سهام ایران روند قیمت سهام را پیش‌بینی کرد. از این میان، روش میانگین متحرک ساده از بالاترین اعتبار برای پیش‌بینی روند قیمت سهام برخوردار است. در نتیجه بازار بورس تهران پتانسیل بکارگیری شاخص‌های مختلف تحلیل تکنیکی را داراست.

فهرست مطالب

فصل اول: کلیات پژوهش

مقدمه 1

1-1-شرح و بیان مساله پژوهشی 2

1-2-اهمیت و ارزش پژوهش 3

1-3-اهداف پژوهش 3

1-4-فرضیه های پژوهش 3

1-5-روش پژوهش 3

1-5-1- نوع مطالعه و روش بررسی فرضیه‌ها‌ 3

1-5-2- جامعه آماری 4

1-5-3- ابزار گردآوری داده‌ها‌ 4

1-5-4- ابزار تجزیه و تحلیل 4

1-6-واژگان کلیدی 5

1-7- کلمات اختصاری 6

خلاصه 6

 

فصل دوم: مروری بر ادبیات موضوع

مقدمه 7

2-1- مفاهیم سرمایه گذاری 8

2-1-1- بازارهای مالی 8

2-1-1-1-انواع بازارهای مالی 8

2-1-1-2- بورس 9

2-1-1-2- 1- اهمیت بورس اوراق بهادار 9

2-1-1-2- 2- تاریخچه بورس اوراق بهادار تهران 10

2-1-2- مفهوم سرمایه گذاری 12

2-1-3- فرایند سرمایه گذاری 12

2-1-4- روش های سرمایه گذاری 13

2-1-5- سهام عادی 13

2-1-6- نظریه سرمایه گذاری در بورس 14

2-1-7- بازده سرمایه گذاری 14

2-1-8- کارایی بازار سرمایه و اهمیت آن در ارزیابی سهام 15

2-2- پیش بینی 16

2-2-1- روش های پیش بینی کیفی 16

2-2-2- روش های پیش بینی کمی 16

2-2-3- انتخاب روش پیش بینی 16

2-2-4- روش بنیادی 17

2-2-5- روش پیش بینی سری های زمانی کلاسیک 18

2-2-6- روش های تکنیکال یا فنی 19

2-3- سیستم فازی 24

2-3-1- منطق فازی 24

2-3-1-1- مجموعه‌های فازی 25

2-3-1-2- عملگرهای مجموعه فازی 25

2-4- شبکه عصبی فازی 26

2-4-1- شبکه‌های عصبی مصنوعی 26

2-4-2- تاریخچه شبکه‌های عصبی مصنوعی 26

2-4-3- ویژگی و قابلیت‌های شبکه‌های عصبی مصنوعی 27

2-4-4- تعریف شبکه عصبی قازی 28

2-4-5- نرون‌های فازی 28

2-4-6- قوانین فازی 30

2-4-7-سیستم‌های استنتاج فازی 30

2-4-7-1- روش‌های فازی ساز 32

2-4-7-2- روش‌های غیر فازی ساز 35

2-4-7-3- سیستم استنتاج ممدانی 37

2-4-7-3- سیستم استنتاج تاکاگی-سوگنو 38

2-4-8-شبکه ‌های عصبی فازی چند لایه 39

2-4-9- شبکه ANFIS 39

2-4-9-1- مزایای ANFIS 41

2-4-10-‌ فرایند یادگیری در شبکه 42

2-4-10-1- الگوریتم‌یادگیری پس انتشار خطا 42

2-4-10-2- ایجاد ساختار اولیه FIS 43

2-4-10-3- فرایند یادگیری در شبکه ANFIS 44

2-4-11- اندازه گیری خطا در شبکه‌های عصبی 44

2-4-12- نرمالسازی خطی داده‌ها در فاصله [L,H] 46

2-5- پیشینه موضوع 47

2-5-1- بررسی کارآیی‌یا عدم کارآیی بازار 47

2-5-2- امکان سنجی بکارگیری شاخص‌های تحلیل تکنیکال در پیش‌بینی روند قیمت سهام 48

2-5-3- مروری بر پژوهشات صورت گرفته در زمینه پیش‌بینی متغیرهای اقتصادی و مالی با استفاده از سیستم‌های هوشمند 49

2-5-3-1- پژوهشات داخلی 49

2-5-3-2- پژوهشات خارجی 52

خلاصه 61

 

فصل سوم: روش پژوهش

مقدمه.. 62

3-1- اهداف پژوهش.. 63

3-2- متغیرهای پژوهش.. 63

3-3- فرضیه های پژوهش.. 65

3-4- نوع پژوهش.. 65

3-5- روش پژوهش.. 66

3-6- جامعه آماری.. 73

3-7- ابزار گردآوری داده ها.. 73

3-8- ابزار تجزیه و تحلیل.. 75

3-9- قلمرو پژوهش.. 75

خلاصه.. 75

 

فصل چهارم: تجزیه و تحلیل داده‌ها

مقدمه 76

4-1- انتخاب متغیرهای ورودی 77

4-1-1- نرمال سازی داده ها 77

4-1-2- شناسایی متغیرهای ورودی شبکه 77

4-2- پیش بینی شاخص های تحلیل تکنیکال با استفاده از شبکه عصبی فازی 81

4-2-1- انتخاب داده های آزمون و آموزش 81

4-2-2- طراحی شبکه عصبی فازی 81

4-2-3- ارزیابی عملکرد شبکه 82

4-2-3-1- ارزیابی عملکرد شبکه بر اساس معیار MSE 82

4-2-3-2- ارزیابی عملکرد شبکه بر اساس معیار RMSE 85

4-3- بررسی درصد صحت پیش بینی شبکه عصبی فازی 87

4-4- بررسی معناداری تفاوت میانگین بازدهی روش های معاملاتی 89

خلاصه 93

 

فصل پنجم: نتیجه گیری و پیشنهادها

مقدمه 94

6-1- خلاصه پژوهش 95

6-2- نتایج پژوهش 95

6-2- محدودیت های پژوهش 97

6-3- پیشنهادها 97

خلاصه 98

منابع فارسی 99

منابع انگلیسی 103

پیوست1 107

پیوست2 117


دانلود با لینک مستقیم


پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

دانلود پایان نامه شبکه های عصبی مصنوعی و تجزیه و تحلیل طراحی سازه

اختصاصی از فایل هلپ دانلود پایان نامه شبکه های عصبی مصنوعی و تجزیه و تحلیل طراحی سازه دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه شبکه های عصبی مصنوعی و تجزیه و تحلیل طراحی سازه


دانلود پایان نامه شبکه های عصبی مصنوعی و تجزیه و تحلیل طراحی سازه

چکیده

       شبکه های عصبی مصنوعی در بسیاری از موارد تحقیق و در تخصص های گوناگون به کار گرفته شده و به عنوان یک زمینه تحقیقاتی بسیار فعال حاصل همکاری دانشمندان در چند زمینه علمی از قبیل مهندسی رایانه ، برق ، سازه ، و بیو لوژی اند . از موارد کاربرد شبکه ای عصبی می توان به طبقه بندی اطلاعات ، شناخت ویژگی های حروف و شکلها ، برآورد توابع و غیره اشاره کرد .

کاربرد شبکه های عصبی در مهندسی عمران و به خصوص سازه نیز روز به روز در حال توسعه است و بی شک در آینده شاهد فراگیر شدن و گسترش این علم در مهندسی سازه خواهیم بود . از موارد استفاده شبکه های عصبی در مهندسی عمران می توان به بهینه سازی ، تحلیل ، طراحی و پیش بینی خیز و وزن سازه ها ، تحلیل و طراحی اتصالات ، پیش بینی نتایج آزمایشات بتنی و خاکی ، کاربرد در تئوری گرافها و بسیاری از موارد دیگر اشاره کرد .

این مقاله حاوی پنج بخش است :

بخش اول به مفاهیم بنیادی شبکه های عصبی مصنوعی می پردازد و بعضی از موضوعات برای آشنایی مقدماتی به اختصار در این بخش توضیح داده شده است و شامل مدل بیولوژیکی شبکه های عصبی می باشد و همچنین سلول عصبی مصنوعی توضیح داده شده است که به منظور تقلید از خصوصیات مرتبه اول ( First order ) سلول عصبی بیولوژیکی طراحی شده است .سطح تحریک سلول عصبی که توسط جمع ورودی های وزن دار معین شده است ، در این بخش توضیح داده شده است .

شبکه های عصبی مصنوعی تک لایه و چند لایه نیز به طور مفصل مورد بحث قرار گرفته است که ساده ترین شبکه به صورت گروهی از سلول های عصبی است که در یک لایه مرتب شده اند و شبکه های چند لایه تواناییها و قابلیت های محاسباتی بیشتری را ارائه می کنند . شبکه های بازگشتی که شامل ارتباطات تغذیه برگشتی هستند ، در این شبکه ها ، خروجی های قبیل دوباره به سمت عقب به طرف ورودی ها منتشر می شوند و خروجی شان هم با استفاده از ورودی جاری و هم خروجی قبلیشان تعیین می شو د.

بخش دوم :شامل الگوریتم های آموزشی می باشد و هدف از آموزش شبکه را توضیح می دهد که یک شبکه به گونه ای آموزش داده می شود که با به کار بردن یک دسته از ورودی ها ، دسته خروجی های دلخواه تولید شود .

شامل 146 صفحه فایل word


دانلود با لینک مستقیم


دانلود پایان نامه شبکه های عصبی مصنوعی و تجزیه و تحلیل طراحی سازه

دانلود پاورپوینت دستگاه عصبی - 19 اسلاید

اختصاصی از فایل هلپ دانلود پاورپوینت دستگاه عصبی - 19 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت دستگاه عصبی - 19 اسلاید


دانلود پاورپوینت دستگاه عصبی - 19 اسلاید

 

 

 

 

 

نمونه ای از اسلایدهای این پاورپوینت را در زیر می بینید:

 

—عملکرد دستگاه عصبی: دریافت تحریکات از محیط داخلی و خارجی بدن

 

—قادر به پاسخ دادن به تحریکات دریافتی

 

—کنترل فعالیت عملکرد ارگانهای بدن

 

—تقسیم آناتومیک دستگاه عصبی:

 

—CNS: Central Nervous System دستگاه عصبی مرکزی: مغز و نخاع

 

—PNS: Peripheral Nervous System دستگاه عصبی محیطی: اعصاب مغزی و اعصاب نخاعی

 

—ANS: Autonomic Nervous System دستگاه عصبی خودکار: سمپاتیک و پاراسمپاتیک

 

—دستگاه عصبی تشکیل شده است از:

 

—سلول عصبی (نورون) Neuron و سلول حمایت کننده Glial Cell

 

برای دانلود کل پاپورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت دستگاه عصبی - 19 اسلاید

دانلود مقاله معرفی شبکه های عصبی و ساختار نورون عصبی‎

اختصاصی از فایل هلپ دانلود مقاله معرفی شبکه های عصبی و ساختار نورون عصبی‎ دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله معرفی شبکه های عصبی و ساختار نورون عصبی‎


دانلود مقاله معرفی شبکه های عصبی و ساختار نورون عصبی‎

شرح مختصر : دراین نوشتار به معرفی شبکه‌های عصبی مصنوعی و ساختارهای آن می‌پردازیم. در ابتدا توضیحاتی درباره هوش مصنوعی و شاخه‌های آن به صورت خلاصه می‌پردازیم، سپس نورونهای شبکه‌های عصبی طبیعی معرفی شده و طرز کار آنها نشان داده شده است، سپس مدل مصنوعی این نورونها و ساختار آنها، مدل ریاضی آنها، شبکه‌های عصبی مصنوعی و نحوه آموزش و به کارگیری این شبکه‌ها است.ابزارهایی نیز برای پیاده سازی این شبکه ها نام برده شده است.

فهرست:

هوش مصنوعی

شاخه های هوش مصنوعی

هوش مصنوعی سمبولیک

هوش پیوندگرا

سیستم های خبره

ربات ها

پردازش زبانهای طبیعی

زبان های هوش مصنوعی

شبکه های عصبی مصنوعی

توصیف شبکه های عصبی

شبکه های عصبی زیستی

معرفی شبکه های عصبی

قابلیت های شبکه های عصبی

تاریخچه شبکه های عصبی

مقایسه شبکه های عصبی با کامپیوتر ها

نورون مصنوعی

از نورن انسان تا نورون مصنوعی

ساختار شبکه عصبی شبکه های پیش خور

شبکه های پیش خور برگشتی


دانلود با لینک مستقیم


دانلود مقاله معرفی شبکه های عصبی و ساختار نورون عصبی‎