فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره پیوند یونی 5ص

اختصاصی از فایل هلپ تحقیق درباره پیوند یونی 5ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

پیوند یونی

پیوند یونی نوعی از پیوند شیمیایی است که برپایه نیروی الکترواستاتیک بین دو یون با بار مخالف شکل می‌گیرد.

ترکیبات یونی متشکل از تعداد زیادی آنیون و کاتیون هستند که با طرح معین هندسی در کنار هم قرار گرفته‌اند و یک بلور بوجود می‌آورند. هر بلور ، به سبب جاذبه‌های منفی ـ مثبت یونها به هم ، نگهداشته شده است. فرمول شیمیایی یک ترکیب یونی نشانه ساده‌ترین نسبت یونهای مختلف برای به وجود آوردن بلوری است که از نظر الکتریکی خنثی باشد.

ماهیت یون

وقتی اتم‌ها به یون تبدیل می‌شوند، خواص آنها شدیدا تغییرمیکند. مثلا مجموعه‌ای از مولکولهای برم قرمز است. اما یونهای در رنگ بلورماده مرکب هیچ دخالتی ندارند. یک قطعه سدیم شامل اتم‌های سدیم‌ نرم است. خواص فلزی دارد و بر آب به شدت اثر می‌کند. اما یونهای در آب پایدارند.

مجموعه بزرگی از مولکولهای کلر ، گازی سمّی به‌رنگ زرد مایل به سبز است، ولی یونهای کلرید مواد مرکب رنگ ایجاد نمی‌کنند و سمّی نیستند. به همین لحاظ است که یونهای سدیم و کلر را به صورت نمک طعام می‌توان بدون ترس از واکنش شدید روی گوجه فرنگی ریخت. وقتی اتم‌ها به صورت یون در می‌آیند، ماهیت آنها آشکارا تغییر می‌کند.

خواص مواد مرکب یونی

رسانایی الکتریکی : رسانایی الکتریکی مواد مرکب یونی مذاب به این علت است که وقتی قطب‌هایی با بار مخالف در این مواد مذاب قرار گیرد و میدان الکتریکی برقرارشود، یونها آزادانه به حرکت در می‌آیند. این حرکت یونها بار یا جریان را از یک‌جا به جای دیگر منتقل می‌کنند. در جسم جامد که یونها بی‌حرکت‌اند و نمی‌توانند آزادانه حرکت کنند، جسم خاصیت رسانای الکتریکی ندارد.

سختی : سختی مواد مرکب یونی به علت پیوند محکم میان یونهای با بار مخالف است. برای پیوندهای قوی انرژی بسیاری لازم است تا یون‌ها از هم جدا شوند و امکان حرکت آزاد حالت مذاب را پیداکنند. انرژی زیاد به معنی نقطه جوش بالا است که خود از ویژگی‌های مواد مرکب یونی است.

شکنندگی : مواد مرکب یونی شکننده‌اند. زیرا که ساختار جامد آنها آرایه منظمی از یونهاست. مثلا ساختار سدیم کلرید (NaCl) را در نظر بگیرید. هرگاه یک سطح از یونها فقط به فاصله یک یون در هر جهت جابجا شود، یونهایی که بار مشابه دارند درکنار یکدیگر قرار می‌گیرند و یکدیگر را دفع می‌کنند و چون جاذبه‌ای در کار نیست بلور می‌شکند. سدیم کلرید را نمی‌توان با چکش کاری ، به ورقه‌های نازک تبدیل کرد. با چنین عملی بلور نمک خرد و از هم پاشیده می‌شود.

گروههای حاوی پیوند یونی

عناصرگروه IA (فلزات قلیایی) یعنی Li ، Na ، K ، Rb ، Cs ، هر یک به ترتیب یک الکترون بیشتر از گازهای نجیب ، (He ، Kr ، Ne ، Ar ، Xe) دارند. اگر هر یک از این فلزات از هر اتم یک الکترون از دست بدهند، جزء باقیمانده آرایش الکترونی گاز نجیب متناظر خود را پیدا می‌کند. مثلا ، Li یک الکترون والانس در آرایش حالت پایه دارد. از دست دادن یک الکترون موجب می‌شود که Li ساختار الکترونی He را پیداکند. یک اتم Li که فقط دو الکترون و سه پروتون داشته باشد، بار +۱ خواهد داشت.

یک اتم باردار مانند یا یک گروه از اتم‌های باردار ، مانند گروه سولفات را یون می‌گویند.

عناصر گروه IIA (فلزات قلیایی خاکی) هریک دو الکترون والانس دارند. پس برای اینکه mg ، ca ، sr ، ba ساختار گاز نجیب را به دست آورند اتم‌های هرعنصر باید دو الکترون از دست بدهند. از دست رفتن دو الکترون موجب می‌شود که دو پروتون در هسته خنثی نشده بماند. پس هر یون بار +۲ خواهد داشت. برای جدا شدن سومین الکترون لازم است جفت الکترونهای تراز اصلی با انرژی پایین‌تر شکسته شود. این امر انرژی زیادتری می‌خواهد. جداشدن الکترونها از فلزات و تشکیل یونهای مثبت حاصل از آنها را می‌توان به راههای مختلف ترسیم کرد.

پس جدا شدن یک الکترون از یک اتم معین جداشدن الکترونهای بعدی به ترتیب مشکلتر می‌شود. زیرا با از دست رفتن هر الکترون بار مؤثر زیادتری می‌شود و الکترونهای باقیمانده را محکمتر نگاه می‌دارد. بطور خلاصه یونهای مثبت وقتی تشکیل می‌شوند که اتم‌های فلزی یک الکترون (گروهIA) دو الکترون (گروهIIA) و یا سه الکترون (گروهIIIA) به اتم‌های غیر فلزی می‌دهند. یونهای حاصل آرایش الکترونی یکسان با یک گاز نجیب دارند.

عناصر گروه VIIA (هالوژنها) یونهای مثبت در حضور یونهای منفی پایدار می‌شوند. خنثی شدن بار ، هر دو نوع یون را پایدار می‌کند. یونهای منفی پایدار ، از اتم‌هایی که شش یا هفت الکترون والانس دارند، تولید می‌شوند. اینگونه اتم‌ها آنقدر الکترون بدست می‌آورند تا ساختار گاز نجیب را پیدا کنند. مثلا اتم‌های عناصر گروه VIIA (هالوژن‌ها) هفت الکترون والانس دارند و هر یک ، یک الکترون می‌خواهند تا آرایش الکترونی یک گاز نجیب را پیدا کنند.

اگر اتم‌های F ، Cl ، Br ، I هر یک ، یک الکترون بدست آورند، یونهای حاصل یعنی ، ، ، به ترتیب آرایش الکترونی را خواهند داشت.

عناص گروه VIA (گروه اکسیژن) اتم عناصر (VIA) برای رسیدن به ساختار الکترونی یک گاز نجیب هریک دو الکترون نیاز دارند. اضافه شدن دو الکترون به هر اتم ، سبب تولید می‌شود. روند به دست آوردن الکترون توسط غیرفلزات ، مانند از دست دادن الکترون توسط فلزات را می‌توان به راههای متفاوت ترسیم کرد. بطور خلاصه غیرفلزات یک ، دو ، یا سه الکترون از فلزات می‌گیرند و یون منفی ایجاد می‌کنند.

این یونهای منفی همگی الکترونهای والانس جفت شده و آرایش هشت الکترونی پایدار گازهای نجیب را دارند.


دانلود با لینک مستقیم


تحقیق درباره پیوند یونی 5ص

پاور پوینت درباره اسپکترومتری تحرک یونی

اختصاصی از فایل هلپ پاور پوینت درباره اسپکترومتری تحرک یونی دانلود با لینک مستقیم و پر سرعت .

پاور پوینت درباره اسپکترومتری تحرک یونی


پاور پوینت درباره اسپکترومتری تحرک یونی

فرمت فایل :powerpoint (لینک دانلود پایین صفحه) تعداد صفحات 13 صفحه

 

 

 

اسپکترومتری تحرک یونیIon mobility specterometry :

در این دستگاه یونها در منبع یونیزاسیون تولید شده و در ناحیه رانش تحت میدان الکتریکی

نسبت به بار به اندازه از هم جداسازی شده و به آشکار ساز می رسند

اجزای مهم دستگاه تحرک یونی:

1-منبع یونش

2-شبکه الکتریکی

3-ناحیه رانش

4-شبکه محافظ

5-آشکارساز

6-تقویت کننده

7- جمع آوری داده ها

8-محفظه تزریق


دانلود با لینک مستقیم


پاور پوینت درباره اسپکترومتری تحرک یونی

روشهای آزمایشگاهی جهت اندازه گیری ضرایب فعالیت منفرد و متوسط یونی الکترولیتها

اختصاصی از فایل هلپ روشهای آزمایشگاهی جهت اندازه گیری ضرایب فعالیت منفرد و متوسط یونی الکترولیتها دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 34

 

روشهای آزمایشگاهی جهت اندازه گیری ضرایب فعالیت منفرد و متوسط یونی الکترولیتها

فصل اول

1- مقدمه

روشهای تجربی متفاوتی جهت اندازه گیری ضرایب فعالیت محلولهای الکترولیت مورد استفاده قرار گرفته است. این روشها به دو بخش تقسیم می شوند بخش اول شامل روشهایی است که انحراف فعالیت جسم حل شده با معادله گیبس دو هم را اندازه گیری می کند و بخش دوم شامل روشهایی است که مستقیماً فعالیت جسم حل شده را اندازه گیری می کند. بخش اول شامل چهار روش که عبارتند از: 1- تنزل نقطه انجماد 2- افزایش نقطه جوش 3- تنزل فشار بخار 4- ایزوپیستیک یا تعادل فشار بخار.

بخش دوم شامل چهار روش: 1- نیروی الکتروموتوری سلهای گالوانی با اتصال مایع 2- نیروی الکتروموتوری با انتقال 3- حلالیت 4- نفوذ از این روشها روش پایداری برای نمکهای کم محلول قابل کاربرد است.

انرژی آزاد گیبس یکی از مهمترین توابع در تعادل فازی است که برحسب درجه حرارت و ترکیب درصد اجزاء تشکیل دهنده محلول است. وقتی که محلول ما از حالت ایده آل انحراف داشته باشد مثلاً در یک محلول الکترولیت برای تابع انرژی گیبس اضافی داریم:

(1-1)

که با استفاده از تابع انرژی آزاد گیبس اضافی می توان ضریب فعالیت را بدست آورد. در عمل می توان توابع انرژی آزاد گیبس اضافی را اندازه گیری نمود و مقدار آن را از روی مقادیر مربوط به ضرایب فعالیت اجزاء در یک محلول مورد ارزیابی قرار می‌گیرد.

روش دیگر استفاده از مقادیر مربوط به پتانسیل یک پیل الکتروشیمیایی است که به طور مستقیم اندازه گیری این پتانسیل ها منجر به تعیین ضرایب فعالیت متوسط و منفرد یونی در یک محلول الکترولیت می شود. برای یک محلول سه سازنده ای ارزیابی ضرایب فعالیت متوسط و منفرد یونی بسیار پیچیده تر از ارزیابی این ضرایب در محلولهای دو سازنده ای است.

با اینکه پیترز]100[ در سال 1979 گفته بود که بواسطه اثرات فضایی بارهای الکتریکی ضرایب فعالیت منفرد یونی قابل اندازه گیری نیست و یا حداقل با روشهای معمولی نمی توان این کمیت را اندازه گیری کرد اما در سال 1996 خشکبارچی- وار ]94[ روشی را برای اندازه گیری ضرایب فعالیت منفرد یونی ارائه دادند که بعداً توسط تقی خانی و همکارانش توسعه داده شد و برای اندازه گیری ضرایب فعالیت منفرد یونی سیستمهای دو سازنده ای استفاده شد ]148[.

مطابق قاعده فازها:

 

زمانی که یک نمک غیرفعال در آبی که گازهای محلول در آن خارج شده است در یک درجه حرارت مشخص حل می شود دو درجه آزادی در شرایطی که دو فاز به یک تعادل ترمودینامیکی می رسد حاصل می شود. نمک و یونهای تشکیل دهنده آن و آب چهار ذره را تشکیل می دهند بنابراین (N=4). در حالی که یک تعادل شیمیایی (R=1) با یک نسبت مشابهت یونها (S=1) وجود دارد پس دو درجه آزادی حاصل می‌شود. البته این دو درجه آزادی، در شرایطی است که از تجزیه یونی صرف نظر شود و تنها مولکولهای آب و نمک در نظر گرفته شود. پس متغییرهای شدتی که تغییر می کند، دو متغییر شدتی می باشد. همچنین متغییرهای شدتی قابل اندازه گیری شامل فشار، درجه حرارت و غلظتهای شرکت کننده در تعادل می باشد. بنابراین برای یک سیستم الکترولیت دو سازنده ای که در آن فاز بخار حلال خالص می باشد.

اندازه گیری فعالیت حلال به عنوان تابعی از غلظت در یک درجه حرارت مشخص می تواند جهت محاسبه ضرایب فعالیت منفرد و متوسط یونی الکترولیت با استفاده از معادله گیبس- دوهم مورد استفاده قرار می گیرد. حالت تعادل شدتی یک فاز منفرد با دو سازنده توسط سه متغییر شدتی مورد بررسی قرار می گیرد.


دانلود با لینک مستقیم


روشهای آزمایشگاهی جهت اندازه گیری ضرایب فعالیت منفرد و متوسط یونی الکترولیتها

دانلود پاورپوینت مایعات یونی

اختصاصی از فایل هلپ دانلود پاورپوینت مایعات یونی دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت مایعات یونی


دانلود پاورپوینت مایعات یونی

 

 

 

 

 

 

 

فهرست مطالب

مقدمه

ساختار آنیون ها و کاتیون های متداول در مایعات یونی

ویژگی های مایعات یونی

سمیت مایعات یونی

کاربردهای مایعات یونی

کاربرد مایعات یونی در شیمی تجزیه

تعداد اسلاید: 22 صفحه

با قابلیت ویرایش و مناسب جهت ارائه سمینار و انجام تحقیقات و گزارشات


دانلود با لینک مستقیم


دانلود پاورپوینت مایعات یونی

دانلود تحقیق کامل درمورد بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی

اختصاصی از فایل هلپ دانلود تحقیق کامل درمورد بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی


دانلود تحقیق کامل درمورد بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 39

 

بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی

عنصر اساسی در توانایی ما برای مشاهده، ساخت، و در بعضی موارد به‌کاراندازی دستگاههای بسیار کوچک فراهم بودن پرتوهای ذره‌ای بسیار متمرکز، مشخصا" از فوتون‌ها، الکترون‌ها و یون‌ها می‌باشد.

قانون عمومی حاکم بر اثر ذرات برخوردی، بیان می‌دارد که چنانچه تمایل به تمرکز یک پرتو از ذرات به یک نقطه با اندازه مشخص داشته باشیم، طول موج وابسته به ذرات برخوردی باید کوچک‌تر از اندازه قطر نقطه مورد نظر باشد. روابط حاکم بر انرژی و بالطبع طول موج این ذرات بیان کننده آن است که اتم‌ها و بالطبع یون‌ها مناسب ترین کاندیداها برای این آزمایشات می‌باشند (جدول 1)

با نگاهی به جدول 1 مشاهده می‌کنیم که فوتون‌های در ناحیه مریی (eV5/3 – 6/1) برای تمایز تا یک مایکرون و تشخیص اندازه‌های تا چند مایکرون مفید هستند. استفاده از فوتون‌های انرژی بالاتر یعنی در ناحیه UV تا محدود اشعه ایکس (eV1000 – 5) قدرت تمایز پذیری بیشتری را حاصل می‌نماید. اما با افزایش بیشتر انرژی (بزرگ‌تر از (eV) 1000) به علت افزایش اثر پخش شدگی (scattering) فوتون‌ها کاربرد خود را در محدوده طول موج‌های کوتاه به سرعت از دست می‌دهند.

در مورد الکترون‌ها که معمولا" در محدوده انرژی‌های (eV) 105 - 102 به کار می‌روند، محدودیت طول موج در اندازه‌های اتمی، که چند آنگستروم (m10-10) می‌باشد، وجود نداشته اما دوباره محدودیت ناشی اثر بخش شدگی ظاهر میگردد، که توجه به استفاده از الکترون‌ها را کاهش می‌دهد. در خصوص به کارگیری یون‌ها، با توجه به جدول 1 حتی یون‌های با انرژی خیلی کم طول موجی بسیار کوتاهی دارا میباشند، و به علت آنکه دارای اندازه‌ای قابل مقایسه با اندازه‌های آرایه‌های اتمی می‌باشند، حوزه عمل آنها بسیار محدود بوده و دارای پخش شدگی بسیار ناچیز می‌باشند.

به واسطه همین خصوصیات از یک طرف و امکان دست‌کاری (manipulation) آسان یون‌ها در میدآنهای الکتریکی و مغناطیسی، توجه به استفاده از یون‌ها در ساختارهای بسیار ریز در قرن جدید و آینده، که قرون ساختارهای بسیار ریز که اصطلاحا" فن‌آوری نانویی گفته می‌شود اهمیت می‌یابد. با توجه به خصوصیات این فن‌آوری، سیستم تحویل دهنده پرتو یونی باید یون‌هایی را آماده سازد که به صورت بسیار بالایی متمرکز شده، و دارای هم‌راستایی بسیار خوبی بوده و در نتیجه دارای پراکندگی بسیار کم و تابندگی بالا باشند.

فضای فاز

برطبق مکانیک آماری مشخصه اصلی حرکت هر توزیع یونی در فضای فاز (phase space) که فضای معرف حرکت یون‌ها می‌باشد، به وسیله مختصات اندازه حرکت (p) و جابه‌جایی (q) بیان می‌گردد. برای سیستم‌های با سه درجه آزادی (x,y,z) این فضا، فضایی 6 بعدی را با مختصات (px,p y,p z) p iو (q x,q y,q z) q i تشکیل می‌دهد.در نتیجه برای یک حجم جزیی در فضای فاز داریم؛

dV6 = dq x dq y dq z dp x dp y dp z

و برای تعداد ذرات در این فضا خواهیم داشت:

d6N = f6(q, p, t)dV6

که Vحجم کلی در این فضا و f دانسیته مکانی در فضای فاز (local phase space density)می‌باشد.

اصل کلی در مکانیک آماری که بیانگر روابط مابین این مختصات و حرکت یون‌ها می‌باشد به قضیه لیوویل مشهور می‌باشد(1). برطبق این قضیه دانسیته(f) فضای فاز (phase space density) در طول مسیر یون‌ها نسبت به زمان مقداری است ثابت و در نتیجه توسط شرایط اولیه توزیع یونی تعیین می‌گردد.

از طرفی بر طبق مکانیک آماری هر توزیع یونی را که در تعادل ترمودینامیکی قرار دارد می‌توان توسط مفهوم اساسی دما مشخص نمود (1). در این صورت نتیجه کلی قضیه لیوویل و مفهوم دما، ارتباط دانسیته توزیع یون‌ها در فضای فاز و دمای توزیع یونی می‌باشد.

phase space density = Constant *exp(E/kT)

به طور خلاصه می‌توان بیان داشت که هر چه دمای مجموعه‌ای از یون‌ها پایین تر باشد دانسیته توزیع یونی در فضای فاز بیشتر می‌گردد (شکل 1).

 در شرایط اولیه (b) توزیع یونی پس از سرد شدن

با توجه به ارتباط مابین دانسیته توزیع یونی و پراکندگی و تابندگی و قطر توزیع می‌توان اصل ارتباط این مفاهیم را با مفهوم دما به صورت ذیل بیان نمود,

با کاهش دمای توزیع یونی، دانسیته

توزیع در فضای فاز افزایش یافته و در نتیجه این امر باعث کاهش پراکندگی (emittance) و افزایش تابندگی (brightness) و کاهش قطر توزیع(distribution diameter) یونی می‌گردد (نمودار 1).

نمودار 1. بیان کننده جهت افزایش و کاهش پارامترهای مختلف.

حد نهایی این کاهش دما و در نتیجه کاهش پراکندگی و قطر توزیع و افزایش تابندگی را می‌توان میعان بوز - انیشتین(2(دانست.

برای ایجاد توزیع یون‌ها در دماهای پایین، ابتدا باید یون‌ها در محیطی که اصطلاحا" به آن تله (trap) می‌گویند، به دام انداخت. تله‌های مغناطیسی که به تله‌های پنینگ مشهورند (3)، تله‌های رادیوفرکانسی (RFQ)، که تله‌های پایولی (Paul trap) نیز نامیده می‌شوند (4)، محیط‌های به دام انداختن یون‌ها را فراهم می‌سازند. جزییات نحوه عملکرد این تله‌ها را می‌توان در مراجع اشاره شده جستجو نمود، اما به دلیل اهمیت و کاربرد آینده در تهیه پرتوهای نوری مورد استفاده در فن‌آوری نانویی توجه خاص به تله‌های رادیوفرکانسی و هدایت کننده‌های یونی رادیو فرکانسی (RFQ ion guide) (چهارقطبی رادیوفرکانسی) که نحوه عملکرد متشابهی با تله‌های رادیوفرکانسی دارند می‌نماییم.

اساسا" تله‌های یونی و هدایت کننده‌های چهارقطبی، محیط‌های ایده آل برای مشاهده و دست‌کاری (manipulation) یون‌ها را فراهم می‌سازند. یک تله یونی دارای ساختاری متشکل از سه الکترود، (الکترود حلقه و دو الکترود انتهایی) به شکل هذلولی دوار می‌باشد که با به‌کارگیری پتانسیل‌های متغیر(AC) و ثابت (DC) یک میدان چهارقطبی را ایجاد می‌نماید که قادر است حرکات ذرات باردار در سه بعد محصور نماید (شکل 2).

شکل2. مشخصات الکترودهای یک تله یونی رادیوفرکانسی

هدایت کننده چهار قطبی، از چهار میله موازی بهره می‌جوید که با اعمال ترکیبی از پتانسیل‌های متغیر (AC) و ثابت (DC) یک میدان چهار قطبی ایجاد و قادر خواهد بود حرکات ذرات باردار را در دو بعد محصور و در بعد سوم باعث انتقال ذرات باردار گردد (شکل 3).

شکل 3. مشخصات الکترودهای یک هدایت کننده چهار قطبی

معادلات حاکم بر حرکات ذرات در چهارقطبی‌ها از نوع فرم عمومی معادلات مشهور به ماتیو(Mathieu equation) (1) بوده که دارای راه حل‌های استاندارد می‌باشند.

در این معادله U جایگزین مختصات z و یا r شده،  و au و qu پارامترهای پایداری حرکت نامیده می‌شوند، و دارای مقادیر که در آنها، w تابع فرکانس RF، U مقدار پتانسیل ثابت (DC) و V دامنه پتانسیل متغیر (AC) می‌باشد.

آنالیز ریاضی معادلات ماتیو (Mathieu)، نواحی از پایداری حرکت یون‌ها را در میدآنهای چهارقطبی مشخص می‌نماید، که به دیاگرام پایداری موسوم می‌باشد (شکل 4). با قراردادن یون‌ها در نواحی پایدار می‌توان آنها را در تله‌ها و هدایت کننده‌های چهارقطبی به ترتیب در سه و دو بعد محصور نمود.

شکل 4. دیاگرام پایداری

سرد کردن یون‌ها در میدآنهای چهارقطبی

عامل اصلی در پایداری حرکت یون‌ها در میدآنهای چهارقطبی وجود RF می‌باشد. هرچند که وجود RF در این میدآنها خود عاملی است جهت افزایش دمای پرتوهای یونی و در نتیجه جلوگیری از ابقای طولانی این پرتوها(5). در حقیقت هر چه دما پرتوها در این میدآنها کاهش یابد پایداری حرکت یون‌ها از یک طرف در این چهار قطبی‌ها افزایش یافته و از طرف دیگر با کاهش دما، دانسیته فضای فاز افزایش یافته و پرتوهایی با پراکندگی کمتر و تابندگی بیشتر حاصل می‌گردد. روش‌های مختلفی برای کاهش دما پرتوهای یونی به‌کار می‌رود که مهم‌ترین آنها عبارتند از:

1- سرد کردن به روش تبخیری،

2- سرد کردن به وسیله برخورد با مولکول‌های خنثی یا سرد کردن بافری،

3- سرد کردن با لیزر،

1- در روش تبخیری، یون‌های با انرژی بالا به وسیله برخورد با الکترودهای چهارقطبی از بین رفته و در نتیجه متوسط انرژی یون‌ها در پرتو کاهش یافته نهایتا" باعث سرد شدن تدریجی پرتو می‌گردد.

2- در روش برخورد با مولکول‌های خنثی (برخورد یون - ذره خنثی)، متوسط انرژی پرتو و در نتیجه دمای پرتو بوسیله برخورد با مولکول‌هایی که جرم آنها به مراتب کوچک‌تر از جرم پرتوهای یونی است در پروسه‌ای که اصطلاحا" کشش جذبی (Viscous Drag) گفته می‌شود، کاهش می‌یابد. در عمل وجود rf به همراه این برخوردها باعث می‌شود دمای تعادل نهایی حاصل از عمل سرد شدن کمی بالاتر از دمای گاز بافری باشد. نهایتا" در این روش با کاهش دمای گاز بافری تا دمای نیتروژن مایع و یا حتی هلیوم مایع می‌توان پرتوهای یونی بسیار متمرکز با پراکندگی بسیار کم و تابندگی بالا ایجاد نمود که کاربردهای آینده این فن‌آوری را در نانوتکنولوژی فراهم می‌سازد.

 

منابع و مراجع:

  1. Goldstein, “Classical Machanics”, Addison-Wesley, Reading (1980).
  2. Eric A. Cornell, Wolfgang Ketterle, Carl E. Wiemen, “Bose-Einstein Condensation in dilute gases of Alkali atoms”, The 2001 Nobel Prize in Physics.
  3. R.E. March and J.F.J. Todd, “Modern Mass Spectrometry-Practical Aspects of Ion Trap Mass Spectrometry, CRC Press series (1995).
  4. A.M. Ghalambor Dezfuli, “Injection, Cooling and Extraction of Ions from a Very Large Paul Trap”, Ph.D. Thesis, McGill University (1996)
  5. A.M. Ghalambor Dezfuli, “Ion Trap Nanotechnology?” Physical society, Physics Department McGill University, Montreal Quebec Canada (2001)
  6. T. Kim. “Buffer gas cooling of ions in a radio frequency Quadrupole ion guide”. Ph.D. Thesis, McGill University Montreal (Quebec), August (1997).

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی