فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله توابع

اختصاصی از فایل هلپ مقاله توابع دانلود با لینک مستقیم و پر سرعت .

مقاله توابع


مقاله توابع

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:39

تابع

در ریاضیات ، تابع رابطه‌ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه‌ای دیگر (شاید یک عضو از مجموعه) را بیان می‌کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه‌های ریاضی به حساب می‌آید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابه‌ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می‌شوند.

تعریف تابع

در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند. یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.
به عنوان مثال تابع f(x)=x2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند x

 





در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند. با این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.
فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.

تاریخچه تابع

نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.
چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه‌ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.

ورودی تابع

ورودی یک تابع را اغلب بوسیله x نمایش می‌دهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش می‌دهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر می‌کند بکار می‌رود. واژه قدیمی آرگومان قبلا به جای ورودی بکار می‌رفت. همچنین خروجی یک تابع را اغلب با y نمایش می‌دهند در بیشتر موارد به جای f(x) , y گفته می‌شود. به جای خروجی تابع نیز کلمه مقدار تابع بکار می‌رود. خروجی تابع اغلب با y نمایش داده می‌شود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش می‌دهیم. (W = f(z

تعریف روی مجموعه‌ها

یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه‌ای را با اعضای مجموعه‌ای دیگر مرتبط می‌کند. تمام روابط موجود بین دو مجموعه نمی‌تواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر می‌کنیم:


دانلود با لینک مستقیم


مقاله توابع
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد