دانلود پاورپوینت ریاضی پایه پنجم فصل 5 : اعداد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 19
ریاضی پایه پنجم
فصل 5 : اعداد اعشاری
دانلود پاورپوینت ریاضی پایه پنجم فصل 5 : اعداد اعشاری ..
دانلود پاورپوینت ریاضی پایه پنجم فصل 5 : اعداد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 19
ریاضی پایه پنجم
فصل 5 : اعداد اعشاری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
دانشگاه آزاد اسلامی – واحد مشهد
زیر نظر استاد ارجمند:
تهیه و تدوین:
تابستان 88
روش همنهشتـــی :
روش همنهشتی خطی Xn+1=(a*Xn + b) mod m ،m مشخص می کند که اعداد تصادفی تا چه مقداری تولید می شود مثلا اگر m =13 باشد . 13 عدد تصادفی می توانیم تولید کنیم.
a=2
b=1
X0=5 X1=( 2 X0 + 1)mod13
m=13
اعدادی که تولید می کند مستقل از هم است ،ولی دنباله اعداد تصادفی که تولید می شود به a وb وm وابسته است . از نظر تئوری اگر a وb خوب انتخاب شوند می تواند همه اعداد تصادفی را تولید کند .
تست آنتروپـــــــــــی :
در این روش تست ، مبنای آن احتمال آمدن هر عدد می باشد از فرمول زیر محاسبه می شود که Pi احتمال تولید عدد i - ام توسط مولد عدد تصادفی است.
مثــــال:
X1=( 2 X0 + 1)mod13
X15=7
X10=9
X5=5
X0=0
X16=2
X11=6
X6=11
X1=1
X17=5
X12=0
X7=10
X2=3
X18=11
X13=1
X8=8
X3=7
X19=10
X14=3
X9=4
X4=2
Pi
عدد
2/20
0
2/20
1
2/20
2
2/20
3
1/20
4
2/20
5
1/20
6
2/20
7
1/20
8
1/20
9
2/20
10
2/20
11
0
12
H = - ∑ Pi log Pi
هرچه آنتروپی مقدار H به H max نزدیک تر باشد این مولد بهتر عمل می کند.
Hmax = log 2 m
تست کی دو :
آزمون آماری خوبی برای تعیین یکنواختی اعداد و ارتباط با مشاهدات و انتظار مشاهده می باشد. برای نمونه های بیشتر از 50 عدد استفاده می گردد. ( N >= 50)
اساس این روش بر تقسیم بندی دسته های مشاهدات استوار است .
فراوانی اعداد تصادفی تولیدی در هر دسته را با فراوانی انتظار مشاهده مقایسه و نزدیکی آنها را می سنجد. دسته ها هیچ گونه رویهم افتادگی نباید داشته باشند تعداد ( دسته ها باید 3 یا بیشتر باشد ).
سپس کای دو را به صورت زیر می یابیم :
Chi2 = ∑ ( Oi – Ei)2
Ei
که مجموع اختلاف مشاهدات و رخ داد ، داده ها در دسته هاست . هرچه مشاهدات و انتظارات از یکدیگر فاصله بگیرند ، مقدار ( Oi – Ei)2 بیش تر می شود و لذا chi2 افزایش می یابد و چنانچه این دو یکسان باشند مقدارchi2 صفر می شود .
روال کار چنین است :
نمونه ها به n دسته تقسیم می گردند که باید n>= 3 باشد.
Oi تعداد مشاهدات در i – امین دسته.
Ei تعداد انتظار مشاهده در i – امین دسته.
= ( N/n) Ei که N تعداد کل نمونه های مشاهده شده است ( انتظار مشاهده یکسان ) .
نیاز به جدول کای دو می باشد که مقدار بحرانی را از آن می یابیم تا با chi2 حاصل مقایسه گردد.
پاورپوینت ریاضی دوم دبستان مبحث : جمع و تفریق اعداد دو رقمی
فرمت فایل: پاورپوینت
تعداد اسلاید: 8
بخشی از متن
برای جمع و تفریق کردن عددهایی که بیشتر از یک رقم دارند نیاز دارید که جمع و تفریق های اساسی را با سرعت انجام دهید .بنابراین سعی کنید با تمرین کردن آن ها را به خاطر بسپارید .
پاورپوینت ریاضی دوم دبستان مبحث : جمع و تفریق اعداد دو رقمی
فرمت فایل: پاورپوینت
تعداد اسلاید: 8
بخشی از متن
برای جمع و تفریق کردن عددهایی که بیشتر از یک رقم دارند نیاز دارید که جمع و تفریق های اساسی را با سرعت انجام دهید .بنابراین سعی کنید با تمرین کردن آن ها را به خاطر بسپارید .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.سری اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...قضیه ۱: تعداد اعداد اول بینهایت است.
قضیه ۱: تعداد اعداد اول بینهایت است.
به این اثبات دقت کنیداز برهان خلف استفاده می کنیم:
فرض خلف : اعداد اول متناهی است.
اعداد اول را در هم ضرب می کنیم.
P1,P2,P3,...,Pn
ضرب اعداد از Pi بزرگتراست.
که عدد ۱ جزو اعداد اول نیست پس به تناقض می رسیم و فرض خلف باطل است. اعداد اول نامتناهی هستند.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را به شکل حاصلضرب اعدادی اول نوشت.قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت.خواص اعداد اول:1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.2-مجذور هر عدد اول برابر است با 24n+1.3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر [url]www.megasender.org[/url] وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
روشی برای شکار اعداد اول
کی از اولین و در عین حال درخشانترین کارهای بشر در نظریه اعداد، اثبات اقلیدس از نامتناهی بودن اعداد اول در کتاب اصول است که امروزه می توان آن را در کتاب های درسی دبیرستانی خواند. نمونه ای عالی از زیبایی و سادگی ریاضیات. یونانی ها اعداد اول را می شناختند و از نقش آن ها به عنوان بلوک های سازنده دیگر اعداد آگاه بودند. بعد از این دستاوردهای بزرگ طبیعی ترین سوالی که به ذهن بشر رسید این بود که چه نظمی بر دنباله اعداد اول حاکم است، چگونه می توان اعداد اول را یافت و چطور می توان اعدادی را که اول نیستند به عوامل اول شان تجزیه کرد. شاید اولین پاسخ به این سوال غربال اراتستن بوده باشد. تا امروز تلاش های زیادی برای یافتن یک فرمول تولید کننده اعداد اول و یا الگویی برای ظهور اعداد اول در میان دیگر اعداد انجام شده است که هر چند کمک های زیادی به گسترش نظریه اعداد کرده اند اما ساختار پیچیده اعداد اول همچنان در مقابل این تلاش ها مقاومت می کند.