فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

اختصاصی از فایل هلپ پاورپوینت الگوریتم های ژنتیک 27 ص.PPT دانلود با لینک مستقیم و پر سرعت .

 

نوع فایل:  ppt _ pptx ( پاورپوینت )

( قابلیت ویرایش )

 


 قسمتی از اسلاید : 

 

تعداد اسلاید : 27 صفحه

1 الگوریتم های ژنتیک Instructor : Farhad M.Kazemi 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند.
که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد.
6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc.
یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود.
Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند.
9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند.
آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « پرداخت آنلاین »


دانلود با لینک مستقیم


پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

دانلود تحقیق رشته کامپیوتر با عنوان الگوریتم های متراکم سازی

اختصاصی از فایل هلپ دانلود تحقیق رشته کامپیوتر با عنوان الگوریتم های متراکم سازی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق رشته کامپیوتر با عنوان الگوریتم های متراکم سازی


دانلود تحقیق رشته کامپیوتر با عنوان الگوریتم های متراکم سازی

دانلود تحقیق رشته کامپیوتر با عنوان الگوریتم های متراکم سازی

فایلهای قبل از چاپ اغلب بزرگ هستند .بنابر این ، این یک امر منطقی است که داده اغلب فشرده شده است . تعداد کاملاً کمی الگوریتم وجود دارد که بتواند هم برای نوشتار و هم برای تصاویر استفاده کرد . یک دانش ابتدایی درباره اینکه چگونه الگوریتم های متفاوت کار می کنند می تواند ارزنده باشد . این اوراق یک دید کلی از الگوریتم های تراکم سازی گوناگون که در صنعت پیش چاپ استفاده می شود ارائه خواهد کرد . آن به هیچ وجه یک دید کلی کامل از همه الگوریتم های موجود نیست .

انواع تراکم سازی ملاک عبارتند از :

متراکم سازی CCITT ‌ گروه 3 و 4 ( هم اکنون در حال ساخت )

  • متراکم سازی Flate / deflate
  • متراکم سازی JPEG
  • متراکم سازی LZW
  • متراکم RLE

انواع الگوریتم های متراکم سازی

الگوریتم های بالا می توانند به 2 بخش جداگانه تقسیم شوند آنها یا بی فایده هستند و یا بافایده .

الگوریتم های بی ضرر محتوای یک فایل را تغییر نمی دهند . اگر شما یک فایل را متراکم سازید و آنگاه آن را گسترده کنید ، آن تغییر نکرده است . الگوریتم های زیر بی ضرر هستند :

 

و ...
در فرمت ورد
در 24 صفحه
قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق رشته کامپیوتر با عنوان الگوریتم های متراکم سازی

الگوریتم های ژنتیکی به کاربره شده در مدیریت ترافیک هوایی 25 ص

اختصاصی از فایل هلپ الگوریتم های ژنتیکی به کاربره شده در مدیریت ترافیک هوایی 25 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 41

 

9) الگوریتم های ژنتیکی به کاربره شده در مدیریت ترافیک هوایی

افزایش ترافیک هوایی، از زمان شروع تجارت هوایی، باعث مشکل اشباع در فرودگاهها، یا مکانهای فضایی شده است. در حالی که هواپیماها ارتقاء می یابند و اتوماتیک تر می شوند. اما هنوز کنترل ترافیکی بر پایه تجربیات انسان است. مطالعه حاضر ، دو مشکل مدیریت ترافیک هوایی (ATM) را به جزء بیان می کند، که برای آنها راه حل های بر پایه الگوریتم ژنتیکی وجود دارد. اولین کاربرددر رابطه با مشکل enroute است و دومین کاربرد در مورد مشکلات مدیریت ترافیکی در سکوهای فرودگاهها است.

9.1) راه حل درگیریهای Enroute = کنترل ترافیک هوایی (ATC) می تواند توسط یک سرس از فیلترها نشان داده شود، جایی که هر فیلتر یک ؟ خاص دارد و افق های خاص محیطی و موقتی را اداره می کند. 5 سطح (لِوِل) قابل تشخیص است. در دوره طولانی (بشتر از 6 ماه) ترافیک در یک روش میکروسکوپی می تواند برنامه ریزی شود. برای مثال مردم با یک نمودار ترافیکی روبرو هستند که اندازه های کمیته ، که برنامه های ساعتی و موافقت با ارتش را مورد توجه قرار داده است، به کاربرده می شود برای فرهنگ هواپیمایی در زمانهای اوج یعنی بعد ظهر جمعه.

در دوره کوتاهتر ، معمولاً در مورد تنظیمات قبل ، صحت می شود. این مورد شامل برنامه ریزی کردن روز ترافیک ، یک یا دو روز قبل تر می شود. در این مرحله ، اشخاص ایدة مشخصی درباره بیشتر برنامه ی پرواز و ظرفیت کنترل هر مرکز دارند. حداکثر جریان هواپیما که می تواند یک قطر را سوراخ کند. ظرفیت قطر نامیده می شود. این عمل توسط CFMU3 انجام می شود. ترافیک میان آتلانتیک برای مثال در این مرحله مورد توجه قرار می گیرد. راههای هوایی، تنظیم ساعت های پرواز و حالت هوا مورد توجه قرار می گیرد. به طور کل این شغل توسط FMP4 در هر مرکز صورت می گیرد. آخرین فیلتر ، فیلتر تاکتیکال است که با کنترل داخل یک قطر بستگی دارد. زمان متوسطی که یک هواپیما در یک بخش صرف می کند حدود 15 دقیقه است. اینجا میزان رویت کنترل کننده کمی بالاتر از میزان دریافت طرحهای پرواز است چند دقیقه قبل از ورود هواپیما به بخش. کنترل کننده وظیفه چک کردن، حل اختلافات و همپایه بودن با بخش های همسایه را تضمین می کند. در این حالت تعیین تعریف برخورد مطلوب است. دو هواپیما با هم برخورد دارندوقتی که فاصله جدایی افقی بین آنها کمتر 5 مایل باشد و تفاوت انها در ارتفاع کمتر از 1000 فیت باشد. روش هایی که توسط کنترل کننده برای حل این برخورد به کار می رود بر پایه مسائل زیر است.

بر روی تجارب قبلی و هر دانش خلاقی. وقتی که چند جفت از هواپیماها در اختلاف مشابهی با هم تماس دارند، آنها با ساده کردن مشکلات شروع می کنند که فقط اختلافات ابتدایی را داشته باشند.

برای حل فیلتر اضطراری به نظر نمی رسد که مداخله کند به جز مواردی که سیستم کنترل دچار نقض شده یا اینکه ضعیف شده است. برای کنترل کننده ، آشیانه اطمینان مسیر هر هواپیما را با افق موقت چند دقیقه ایی پیش بینی می کنند. از موقعیت های رادار و الگوریتم های ادامه دار استفاده می کند و یک اخطار را در لحظه برخورد بوجود می آورد. این یک راه حلی را برای برخورد پیشنهاد نمی کند. به طور کل TCAS به نظر می رسد که از چنین تصادفی جلوگیری کند. پیش بینی موقت کمتر از یک دقیقه است (بین 25 تا 40 ثانیه) بنابر این بسیار دیر است برای کنترل کننده مانور هواپیما را، همانطور که تخمین زده شده که نیاز به حداقل زمان 1 تا 2 دقیقه برای آنالیز کردن موقعیت دارد راه حلی را پیدا کنند و آنرا به هواپیماها اطلاع دهند. به طور عمومی TCAS، هواپیمای اطاف را جستجو می کند و به خلبان برای حل برخورد پیشنهاداتی می کند. این فیلتر باید برخورد غیر قابل پیش بینی را حل می کند، برای مثال وقتی که یک هواپیما از سطح پرواز خود بالاتر رفته است یا یک مشکل تکنیکی که به طور قابل توجهی ارتفاع آنرا پایین آورده است. کاربردهای پیشنهاد شده در این بخش با فیلتر تاکتیکال ارتباط دارند: دانستن موقعیت هواپیما در لحظه حاضر و موقعیت بعدی آنها، را بوجود نمی آورد. راه حل برای پایه چندین تصور است. یک هواپیما نمی تواند سرعت خود را تغییر دهد (یا بسیار آرام باید این کار را بکند) مگر در مواقع فرود. نباید اینطور تصور شود که یک هواپیما با سرعت انی پرواز می کند، به غیر مواردی که سطح بندی می شود و هیچ بادی وجود ندارد. به علاوه در طول


دانلود با لینک مستقیم


الگوریتم های ژنتیکی به کاربره شده در مدیریت ترافیک هوایی 25 ص

پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

اختصاصی از فایل هلپ پاورپوینت الگوریتم های ژنتیک 27 ص.PPT دانلود با لینک مستقیم و پر سرعت .

پاورپوینت الگوریتم های ژنتیک 27 ص.PPT


پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

 

نوع فایل:  ppt _ pptx ( پاورپوینت )

( قابلیت ویرایش )

 


 قسمتی از اسلاید : 

 

تعداد اسلاید : 27 صفحه

1 الگوریتم های ژنتیک Instructor : Farhad M.Kazemi 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند.
که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد.
6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc.
یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود.
Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند.
9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند.
آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « پرداخت آنلاین »


دانلود با لینک مستقیم


پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

دانلود الگوریتم های ژنتیک 27 ص.PPT

اختصاصی از فایل هلپ دانلود الگوریتم های ژنتیک 27 ص.PPT دانلود با لینک مستقیم و پر سرعت .

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 27 صفحه

1 الگوریتم های ژنتیک Instructor : Farhad M.Kazemi 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند.
که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد.
6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc.
یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود.
Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند.
9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند.
آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه ایران پاورپوینت کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 


 

دانلود فایل  


دانلود با لینک مستقیم


دانلود الگوریتم های ژنتیک 27 ص.PPT