فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

اختصاصی از فایل هلپ دانلود پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

Johannes Schemmel1, Karlheinz Meier1, and Felix Sch¨urmann1

Universit¨at Heidelberg, Kirchho_ Institut f¨ur Physik, Schr¨oderstr. 90, 69120

Heidelberg, Germany,

schemmel@asic.uni-heidelberg.de,

WWW home page: http://www.kip.uni-heidelberg.de/vision.html

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .

1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

مسئله اصلی که هنوز باید حل شود آموزش است .

حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .

در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .

آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .

دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .

اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .

بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .

اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .

برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .

این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .


دانلود با لینک مستقیم


دانلود پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

تحقیق درباره الگوریتم فلوید

اختصاصی از فایل هلپ تحقیق درباره الگوریتم فلوید دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

الگوریتم فلوید برای یافتن کوتاه ترین مسیر

یک مشکل متداول در سفره های هوایی هنگامی که پرواز مستقیم وجود نداشته باشد تعیین کوتاه ترین مسیر پرواز از شهری به شهر دیگر است . حال الگوریتمی طراحی می کنیم که این مسئله و مسائل مشابه را حل کند . نخست لازم است نظریه گراف ها را مرور کنیم . شکل یک گراف جهت دار و موضون را نشان می دهد به خاطر دارید که در نمایش تصویری گراف ها دایره نشان گر راس ها و خط میان دو دایره نشان دهنده یال ها هستند . اگر هر یال دارای جهت باشد گراف را گراف جهت دار یا دیاگراف می گویند . هنگام رسم یال ها در این گونه گراف ها از پیکان برای نشان دادن جهت استفاده می کنیم در یک دیاگراف بین دو راس امکان وجود دو یال است که جهت آنها مخالف هم هست. برای مثال درشکل یک یال از v1 به v2 و یکی از v2 به v1 وجود دارد.اگر این یال ها با مقادیری همراه باشند این مقادیر را وزن و گراف حاصل را موزون می خوانند.

در این جا فرض می کنیم که این مقادیر غیر منفی است.گرچه این مقادیر را معولاً وزن می نامند در بسیاری از از کابردها نشانگر فاصله است.بنابراین مسیر را به عنوان فاصله میان راسی تا راس دیگر در نظر می گیرند.در یک گراف جهت دار مسیر مجموعه ای از راس هاست به طوری که از یک راس تا راس دیگر یک یال وجود دارد. مسیری از یک راس به خود آن راس را چرخه می گویند.

اگر مسیری هیچگاه دوبار از یک راس نگذرد مسیر ساده نامیده می شود.توجه کنید که یک مسیر ساده هرگز حاوی زیر مسیری که چرخه ای باشد نیست.طول یک مسیر در گراف موزون حاصل جمع اوزان مسیر است. در یک گراف ناموزون طول مسیر صرفاً عبارت است از تعداد رئوس موجود در آن است.

مسئله ای که کاربردهای فراوان دارد یافتن کوتاهترین مسیر از راسی به رئوس دیگر است. واضح است کوتاهترین مسیر باید مسیری ساده باشد. در شکل سه مسیر ساده از v1 به v2 وجود دارد یعنی [v1,v2,v3] [v1,v4,v3] [v1,v2,v4,v3] .چون

Length[v1,v2,v3]=1+3=4

Length[v1,v4,v3]=1+2=3

Length[v1,v2,v4,v3]=1+2+2=5

[v1,v4,v3]کوتاهترین مسیر ازv1 به v3 است.همانطور که پیش از این گفته شد یک کاربرد متداول کوتاهترین مسیر تعیین کوتاهترین مسیر میان دو شهر است.

مسئله کوتاهترین یک مسئله بهینه سازی است. برای هر نمونه از مسئله بهینه سازی ممکن است بیش از یک راه حل وجود داشته باشد.هریک از راه حل های پیشنهادی دارای مقداری مرتبط با آن است و حل نمونه آن حلی است که دارای مقدار بهینه است.مقدار بهینه حداقل است یا حد اکثر در مورد مسئله کوتاهترین مسیر یک حل پیشنهادی مسیری از یک راس به راس دیگر بود .مقدار آن طول مسیر و مقدار بهینه حداقل طول است.

چون ممکن است بیش از یک کوتاهترین مسیر از راسی به راس دیگر وجود داشته باشد مسئله ما یافتن هر یک از این کوتاهترین مسیر هاست.یک الگوریتم واضح برای این مسئله تعیین طول همه مسیرها برای هر راس از ان راس به هریک از رئوس دیگر است.اما زمان این الگوریتم بدتر از زمان نمایی است. برای مثال فرض کنید از هر راس به همه رئوس دیگر یک یال وجود دارد .در این صورت زیر مجموعه ای از همه مسیر ها عبارت است از مجموعه ای خواهد بود که از راس نخست شروع می شود و به راسی دیگر ختم می شود و از همه رئوس دیگر عبور می کنند.چون راس دوم در چنین مسیری می تواند هریک از n-2 راس باشد راس سوم در چنین مسیری می تواند هر یک از n-3 راس باشد...

و راس دومی به آخری روی چنین مسیری فقط می تواند یک راس باشد.تعداد کل مسیرها از یک راس که از همه رئوس دیگر بگذرد عبارت است از :

(n-2)(n-3)…1=(n-2)!

که بد تر از حالت نمایی است. در بسیاری از مسائل بهینه سازی با همین وضعیت مواجه هستیم . یعنی الگوریتمی که همه حالت های ممکن را در نظر بگیرد زمان آن نمایی یا بدتر است.

با استفاده از برنامه نویسی پویا یک الگوریتم زمانی درجه سوم برای مسئله کوتاهترین مسیر ایجاد می کنیم. نخست الگوریتمی طرح می کنیم که فقط طول کوتاهترین مسیرها را تعیین کند. سپس آن را طوری اصلاح می کنیم که کوتاهترین مسیر را نیز ایجاد کند .یک گراف موزون حاوی n راس را با یک آرایه w نشان می دهند که در آن

اگر یالی بین , باشد وزن یال

اگر یالی بین , نباشد w[i][j]=

اگر i=j باشد 0

چون راس vj وقتی مجاور راس vi خوانده می شود که یالی بین vj و vi باشد به این آرایه نمایش ماتریس همجواری یک گراف می گویند .اگر بتوانیم راهی برای محاسبه مقادیر d از مقادیر w بیابیم الگوریتمی برای مسئله کوتاهترین مسیر خواهیم داشت این هدف با ایجاد n+1 آرایه قابل حصول است که وداریم : =طول کوتاهترین مسیر از VI به VJ فقط با استفاده از رئوس موجود در مجموعه {V1,V2,….VK} به عنوان رئوس واسطه پیش از انکه نشان دهیم چرا به این ترتیب قادر به محاسبه D از روی W هستیم معنی عناصر این آرایه ها را توضیح می دهیم .


دانلود با لینک مستقیم


تحقیق درباره الگوریتم فلوید

دانلود پاورپوینت ساختمان داده‌ها و الگوریتم - 387 اسلاید

اختصاصی از فایل هلپ دانلود پاورپوینت ساختمان داده‌ها و الگوریتم - 387 اسلاید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ساختمان داده‌ها و الگوریتم - 387 اسلاید


دانلود پاورپوینت ساختمان داده‌ها و الگوریتم - 387 اسلاید

 

 

 

Get (index):

 خروجی آن اندیس عنصر میباشد بر طبق جایگاه آن ودرصورتی مقدار(1-) را برمی گرداند که عنصر مورد نظر در لیست نباشد.

Remove (index):

عنصر را حذف کرده و محتوای عنصر  را برمی گرداند.

Add (index, x):

 عنصر x را در index داده شده اضافه کرده و پس از آن شماره اندیس ما بقی عناصر از موقعیت جاری یک واحد افزایش میابد.

Output( ):

خروجی لیست است که از چپ به راست مرتب می شود

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت ساختمان داده‌ها و الگوریتم - 387 اسلاید

مقاله درباره کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقهکارایی الگوریتم مسیریابی شکسته شد

اختصاصی از فایل هلپ مقاله درباره کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقهکارایی الگوریتم مسیریابی شکسته شد دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 35

 

«کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقه»

چکیده:

این مقاله شبکه های سویچنگ سه طبقه clos را از نظر احتمال bloking برای ترافیک تصادفی در ارتباطات چند بخشی بررسی می کند حتی چنانچه سویچ های ورودی توانایی چند بخشی را نداشته باشند و نیاز داشته باشند به تعداد زیاد وغیرمجازی از سویچهای میانی برای فراهم کردن این مسیرهایی که پلاک نشوند مطابق درخواستها مدل احتمالی این دید را به ما میدهد که احتمال پلاک شدن در آن بسیار کاهش یافته و تقریبا به صفر می رسد در ضمن اینکه تعداد سویچهای میانی بسیار کمتر از تعداد تئوریک آن است.

در این مقاله یک الگوریتم مسیریابی شکسته شده را فعال پلاک شدن در آن معدنی شده است برای اینکه قابلیت مسیریابی با fanout بالا را برآورده کند. ما همچنین مدل تحلیلی را بوسیله شبه سازی کردن شبکه بر روی

فهرست اصطلاحات: چند بخشی، ارزیابی عملکرد، مدل احتمالی، شبکه های سویچینگ

معدنی:

شبکه های clos بخاطر انعطاف پذیری وساده بود نشان بطور گسترده در شبکه های تلفن، ارتباطات Data و سیستمهای محاسبه ای موازی بکار برده می شوند. کارایی خیلی از برنامه های کاربردی بوسیله یک عمل چند بخشی موثر که پیغامی را به چند دریافت کننده بصورت همزمان می فرستد بهتر می شود. به عنوان مثال در سیستمهای چند پردازنده ای یک متغیر همزمان سازی قبل از آنکه پرازنده ا بکارشان ادامه دهند باید فرستاده شود. همانطوریکه برنامه های کاربردی به خدمات چند بخشی موثر که توسعه پیدا کرده نیاز دارند در طی چند سال اخیر حتی در شبکه های با دامنه عمومی طراحی سیستمهای سویچینگ که بطور موثر بادرخواستهای چندبخشی سروکار دارد نیز اهمیت پیدا کرده است.

تلاشهای زیادی برای سازگار کردن شبکه های clos (که در ابتدا برای ارتباطات نقطه به نقطه توسعه پیدا کرده بودند) برای آنکه با ارتباطات چند بخشی وفق پیدا کنند انجام شده است.شبکه clos چند بخشی با قابلیت پلاک نشدن هنوز بسیار گران در نظر گرفته میشوند برای همین کارایی آن را روی پیکربندی های کوچکتر از معمول در نظر نمی گیرند.

یک شبکه clos سه طبقه بوسیله نشان داده می شود که سویچهای طبقه ورودی m سویچهای لایه میانی و سویچهای لایه خروجی است، هر کدام از سویچهای لایه ورودی تاپورت ورودی خارجی دارند و به هر کدام از سویچهای لایه میانی اتصال دارد بنابراین ارتباط بین طبقه ورودی وطبقه میانی وجود دارد . هر سویچ طبقه خروجی عدد پورت خروجی دارد و به هر کدام از سویچها یک درخواست اتصال نشان داده میشود به شکل c(x,y) که در آن x یک سویچ ورودی و را یک مجموعه مقصد از سویچهای خروجی است.

چندی /1 درجه fanout درخواست نامیده می شود. به یک مجموعه از درخواستهای اتصال سازگار گفته می شود اگر جمع تصادفات هر کدام از سویچهای ورودی از بزرگتر نباشد وجمع تصادفات کدام از سویچهای خروجی بزرگتر از نباشد.


دانلود با لینک مستقیم


مقاله درباره کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقهکارایی الگوریتم مسیریابی شکسته شد

دانلود پاورپوینت الگوریتم های ژنتیک 27 ص.PPT

اختصاصی از فایل هلپ دانلود پاورپوینت الگوریتم های ژنتیک 27 ص.PPT دانلود با لینک مستقیم و پر سرعت .

 

نوع فایل:  ppt _ pptx ( پاورپوینت )

( قابلیت ویرایش )

 


 قسمتی از اسلاید : 

 

تعداد اسلاید : 27 صفحه

1 الگوریتم های ژنتیک Instructor : Farhad M.Kazemi 2 الگوریتم ژنتیک الگوریتم ژنتیک روش یادگیری بر پایه تکامل بیولوژیک است. این روش در سال 1970 توسط John Holland معرفی گردید این روشها با نام Evolutionary Algorithms نیز خوانده میشوند.
3 ایده کلی یک GA برای حل یک مسئله مجموعه بسیار بزرگی از راه حلهای ممکن ار تولید میکند. هر یک از این راه حلها با استفاده از یک “ تابع تناسب” مورد ارزیابی قرار میگیرد. آنگاه تعدادی از بهترین راه حلها باعث تولید راه حلهای جدیدی میشوند.
که اینکار باعث تکامل راه حلها میگردد. بدین ترتیب فضای جستجو در جهتی تکامل پیدا میکند که به راه حل مطلوب برسد در صورت انتخاب صحیح پارامترها، این روش میتواند بسیار موثر عمل نماید.
4 فضای فرضیه الگوریتم ژنتیک بجای جستجوی فرضیه های general-to specific و یا simple to complex فرضیه ها ی جدید را با تغییر و ترکیب متوالی اجزا بهترین فرضیه های موجود بدست میاورد. در هرمرحله مجموعه ای از فرضیه ها که جمعیت (population) نامیده میشوند از طریق جایگزینی بخشی از جمعیت فعلی با فرزندانی که از بهترین فرضیه های موجود حاصل شده اند بدست میآید. 5 ویژگیها الگوریتم های ژنتیک در مسائلی که فضای جستجوی بزرگی داشته باشند میتواند بکار گرفته شود. همچنین در مسایلی با فضای فرضیه پیچیده که تاثیر اجرا آن در فرضیه کلی ناشناخته باشند میتوان از GA برای جستجو استفاده نمود. برای discrete optimizationبسیار مورد استفاده قرار میگیرد. الگوریتم های ژنتیک را میتوان براحتی بصورت موازی اجرا نمود از اینرو میتوان کامپیوترهای ارزان قیمت تری را بصورت موازی مورد استفاده قرار داد. امکان به تله افتادن این الگوریتم در مینیمم محلی کمتر از سایر روشهاست. از لحاظ محاسباتی پرهزینه هستند. تضمینی برای رسیدن به جواب بهینه وجود ندارد.
6 Parallelization of Genetic Programming در سال 1999 شرکت Genetic Programming Inc.
یک کامپیوتر موازی با 1000 گره هر یک شامل کامپیوتر های P2, 350 MHZ برای پیاده سازی روش های ژنتیک را مورد استفاده قرار داد. 7 کاربر دها کاربرد الگوریتم های ژنتیک بسیار زیاد میباشد optimization, automatic programming, machine learning, economics, operations research, ecology, studies of evolution and learning, and social systems 8 زیر شاخه های EA روش های EA به دو نوع مرتبط به هم ولی مجزا دسته بندی میشوند: Genetic Algorithms (GAs) در این روش راه حل یک مسئله بصورت یک bit string نشان داده میشود.
Genetic Programming (GP) این روش به تولید expression trees که در زبانهای برنامه نویسی مثل lisp مورد استفاده هستند میپردازد بدین ترتیب میتوان برنامه هائی ساخت که قابل اجرا باشند.
9 الگوریتم های ژنتیک روش متداول پیاده سازی الگوریتم ژنتیک بدین ترتیب است که: استخری از فرضیه ها که population نامیده میشود تولید وبطور متناوب با فرضیه های جدیدی جایگزین میگردد. در هر بار تکرارتمامی فرضیه ها با استفاده از یک تابع تناسب یا Fitness مورد ارزیابی قرار داده میشوند.
آنگاه تعدادی از بهترین فرضیه ها با استفاده از یک تابع احتمال انتخاب شده و جمعیت جدید را تشکیل میدهند. تعدادی از این فرضیه های انتخاب شده

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « پرداخت آنلاین »


دانلود با لینک مستقیم


دانلود پاورپوینت الگوریتم های ژنتیک 27 ص.PPT