فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

کارشناسی ارشد عمران بهینه سازی مقطع سدهای وزنی بتنی با کمک الگوریتم ژنتیک

اختصاصی از فایل هلپ کارشناسی ارشد عمران بهینه سازی مقطع سدهای وزنی بتنی با کمک الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

کارشناسی ارشد عمران بهینه سازی مقطع سدهای وزنی بتنی با کمک الگوریتم ژنتیک


کارشناسی ارشد عمران بهینه سازی مقطع سدهای وزنی بتنی با کمک الگوریتم ژنتیک

این محصول در قالب  پی دی اف و 133 صفحه می باشد.

 

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی عمران-سازه های هیدرولیکی طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده ازمنابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.


دانلود با لینک مستقیم


کارشناسی ارشد عمران بهینه سازی مقطع سدهای وزنی بتنی با کمک الگوریتم ژنتیک

دانلود پایان نامه تنظیم کنترل کننده PID با استفاده از الگوریتم بهینه سازی پرندگان

اختصاصی از فایل هلپ دانلود پایان نامه تنظیم کنترل کننده PID با استفاده از الگوریتم بهینه سازی پرندگان دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تنظیم کنترل کننده PID با استفاده از الگوریتم بهینه سازی پرندگان


دانلود پایان نامه تنظیم کنترل کننده PID  با استفاده از الگوریتم بهینه سازی پرندگان

سیستم های کنترل خطی با استفاده از تکنیک های تنظیم کلاسیک مانند روش های Ziegler-Nichols و Cohen-Coon کنترل می شوند. مطالعات تجربی نشان داده است که این روش های مرسوم عملکرد رضایت بخشی در کنترل سیستم هایی که دارای ناپایداری در اثر رفتار شدید غیرخطی هستند را از خود نشان نمی دهند. این موضوع به این دلیل می باشد که طراحان کنترل معمولا ترجیح می دهند سیستم های غیرخطی را با استفاده از روش های سعی و خطا یا با استفاده از روش های تجربی تنظیم کنند. بنابراین نیاز برای تحقیق و گسترش یک تکنیک تنظیم مناسب که برای گستره وسیعی از حلقه های کنترلی که با استفاده از روش های مرسوم پاسخ رضایت بخشی از خود نشان نمی دهند ضروری می باشد.

ظهور تکنیک هایی مانند هوش تجمعی یا Swarm Intelligence (SI باعث شد تا بسیاری از مسائل غیرخطی مهندسی حل بشوند. الگوریتم بهینه سازی پرندگان یا Particle Swarm Optimization (PSO که در سال 1995 توسط Eberhart و Kennedy مطرح شده است، یک زیر رشته از SI بوده و از الگوی حرکت گروهی که در طبیعت رخ می دهد مانند حرکت گروهی پرندگان الهام گرفته شده است. در این روش اطلاعات «بهترین مکان» هر ذره که براساس تجربیات قبلی به دست آمده است در اختیار تمام ذرات قرار داده می شود. در این تحقیق مساله شناسایی پارامترهای کنترلر PID به عنوان یک مساله بهینه سازی در نظر گرفته شده است. و تلاش شده است تا پارامترهای PID با استفاده از روش PSO بدست آید. از انواع مختلفی از مدل های سیستم های متداول که معمولا در صنعت وجود دارند برای ارزیابی روش PSO استفاده شده است. مقایسه بین تکنیک PSO با سایر روش های مرسوم تنظیم پارامترهای کنترلر PID با استفاده از شبیه سازی انجام شده است.

برخلاف کاربرد وسیع کنترل PID در صنعت یکی از مشکلات این کنترلر نبود یک روش تنظیم کنترلر جامع و قابل استفاده برای تمام انواع فرآیندهای صنعتی می باشد. بر این اساس مهمترین هدف این پژوهش به دست آوردن روش تنظیم پارامترهای کنترل PID است به طوری که برای تمام انواع فرآیندهای موجود در صنعت قابل استفاده باشد.

مقدمه

در طول سال های گذشته تکنیک های کنترل فرآیند در صنعت پیشرفت های بسیاری کرده است. روش های کنترل متعددی مانند کنترل تطبیقی، شبکه عصبی و کنترل فازی مورد مطالعه قرار گرفته اند. در میان این روش ها مشهورترین روش کنترل PID می باشد که به دلیل ساختار ساده و عملکرد مقاوم در شرایط مختلف به طور گسترده مورد استفاده قرار گرفته است. متأسفانه به علت اینکه اکثر سیستم های صنعتی دارای مسائلی چون تأخیر زمانی، مرتبه بالا و عوامل غیرخطی می باشند تنظیم مناسب گین های کنترل PID برای این سیستم ها مشکل می باشد. تنظیم بهینه یا نزدیک به بهینه پارامترهای PID با استفاده از روش های کلاسیک (روش ZN برای مثال) بسیار مشکل می باشد. به این دلایل افزایش قابلیت کنترل PID بسیار مطلوب است. برای بهبود عملکرد کنترل PID برای کنترل مطلوب انواع مختلف سیستم های صنعتی از روش هوش مصنوعی (AI) استفاده شده است. از روش های AI مانند شبکه عصبی، سیستم فازی و منطق فازی – عصبی به طور گسترده برای تنظیم مناسب پارامترهای کنترلر PID استفاده شده است.

الگوریتم پرندگان (PSO) که اولین بار توسط Kennedy و Eberhart معرفی شد یکی از جدیدترین الگوریتم های ابتکاری می باشد. PSO به وسیله شبیه سازی از یک سیستم اجتماعی ساده شده بدست آمده است و در حل بهینه مسائل غیرخطی دارای عملکرد مقاوم می باشد. تکنیک PSO قادر است یک راه حل با کیفیت بالا به همراه زمان محاسباتی کمتر و همگرایی پایدار نسبت به سایر روش های تصادفی به دست آورد. روش PSO یک تکنیک بهینه سازی عالی و یک رویکرد امیدوارکننده برای حل بهینه پارامترهای PID می باشد. بنابراین در این تحقیق کنترلر PSO-PID را برای جستجوی پارامترهای بهینه PID بررسی شده و روش بهینه سازی الگوریتم پرندگان برای طراحی بهینه کنترلر PID برای راکتور تانک همزن پیشنهاد می شود.

 

شامل 122 صفحه فایل pdf


دانلود با لینک مستقیم


دانلود پایان نامه تنظیم کنترل کننده PID با استفاده از الگوریتم بهینه سازی پرندگان

پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

اختصاصی از فایل هلپ پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال دانلود با لینک مستقیم و پر سرعت .

پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال


پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

 

 

 

 

 

 

 

فایل:Word (قابل ویرایش و آماده پرینت) تعداد صفحه:151

چکیده

در این تحقیق به عنوان نمونه پیش‌بینی زمان‌بندی معاملات سهام 17 شرکت فعال در بورس اوراق بهادار تهران انجام شد. بدین‌صورت که ابتدا داده‌های اولیه که شامل 3 متغیر قیمت پایانی، کمترین قیمت و بیشترین قیمت سهام طی دوره زمانی 1388 تا پایان 1391 بصورت روزانه است، از سایت رسمی سازمان بورس اوراق بهادارتهران گردآوری گردید .سپس با استفاده از این داده‌ها و تعریف توابع مربوطه در نرم افزار Excel شاخص‌های قدرت نسبی((RSI، میانگین متحرک همگرا- واگرا(MACD)، میانگین متحرک ساده((SMA، نوسانگر تصادفی((SO، میانگین متحرک نمایی(EMA) و خط سیگنال(SL) محاسبه شدند. پس از گردآوری سایر داده‌ها با استفاده از رگرسیون گام به گام متغیرهای ورودی هر شبکه عصبی فازی مربوط به هر سهم شناسایی شد. در شناسایی متغیرهای موثر بر شاخص‌های تحلیل تکنیکال این نتیجه حاصل شد که شاخص‌های RSI، MACD و شاخص کل سهام در 70 درصد نمونه مورد بررسی بر RSI 14 روز آتی تاثیر داشته‌اند. از طرفی، MACD-SL در 94 درصد نمونه مورد بررسی به عنوان متغیر ورودی شبکه پیش‌بین MACD-SL 14 روز آتی درنظر گرفته شده‌است. ازمیان متغیرهای مستقل، قیمت پایانی بیشترین تکرار را (تقریبا در 76 درصد موارد) در شبکه‌های پیش‌بینSMA-P 14 روز آتی داشته است. بیشترین متغیری که به عنوان ورودی شبکه‌های پیش‌بین EMA-P و SO 14 روز آتی شناسایی گردید، نسبت قیمت به سود بوده‌است. از میان کلیه متغیرها دلار و طلا به نسبت کمتری به عنوان متغیر ورودی درنظر گرفته شده‌است. این ورودی‌ها در نرم افزار Matlab و از طریق رابط گرافیکی Anfisedit جهت آموزش و تست شبکه مورد نظر به کار گرفته شدند. به گونه‌ای که پنج شبکه ANFIS برای پیش‌بینی متغیرهای RSI ، -SL MACD، -P SMA، SO وEMA-P 14روز آتی برای هر سهم طراحی شدند. سپس با استفاده از معیار MSE و RMSE و درصد صحت پیش‌بینی عملکرد شبکه‌های ایجاد شده بررسی گردید. نتایج نشان داد که میانگین درصد صحت پیش‌بینی کلیه شبکه‌های ایجاد شده (55/96%) بیشتر از حالت تصادفی (50%) است. سپس با اعمال مقررات معاملاتی مقادیر پیش‌بینی شده به سیگنال تبدیل شدند. سپس پیشنهاد داده شد که سیگنال نهایی سیستم طراحی شده از مجموع سیگنال‌های ایجاد شده توسط 5 شاخص تکنیکال مذکور بدست آید. در مرحله بعدی جهت سنجش بازده معاملات پیشنهادی مدل ارائه با استفاده از استراتژی معاملاتی پیشنهادی تحقیق یک معامله فرضی شبیه‌سازی گردید. سپس بازده معاملات صورت گرفته بر اساس سیگنال نهایی سیستم پیشنهادی با بازده روش‌های تکنیکال و روش‌های خرید و نگهداری (در دو حالت پیش از کسر هزینه‌های معاملاتی و پس از کسر هزینه‌های معاملاتی) مقایسه گشتند. با توجه بازدهی مثبت شاخص‌های SMA، EMA، SO و روش پیشنهادی می‌توان نتیجه گرفت که می‌توان با استفاده از این شاخص‌های تحلیل تکنیکال در بازار سهام ایران روند قیمت سهام را پیش‌بینی کرد. از این میان، روش میانگین متحرک ساده از بالاترین اعتبار برای پیش‌بینی روند قیمت سهام برخوردار است. در نتیجه بازار بورس تهران پتانسیل بکارگیری شاخص‌های مختلف تحلیل تکنیکی را داراست.

فهرست مطالب

فصل اول: کلیات پژوهش

مقدمه 1

1-1-شرح و بیان مساله پژوهشی 2

1-2-اهمیت و ارزش پژوهش 3

1-3-اهداف پژوهش 3

1-4-فرضیه های پژوهش 3

1-5-روش پژوهش 3

1-5-1- نوع مطالعه و روش بررسی فرضیه‌ها‌ 3

1-5-2- جامعه آماری 4

1-5-3- ابزار گردآوری داده‌ها‌ 4

1-5-4- ابزار تجزیه و تحلیل 4

1-6-واژگان کلیدی 5

1-7- کلمات اختصاری 6

خلاصه 6

 

فصل دوم: مروری بر ادبیات موضوع

مقدمه 7

2-1- مفاهیم سرمایه گذاری 8

2-1-1- بازارهای مالی 8

2-1-1-1-انواع بازارهای مالی 8

2-1-1-2- بورس 9

2-1-1-2- 1- اهمیت بورس اوراق بهادار 9

2-1-1-2- 2- تاریخچه بورس اوراق بهادار تهران 10

2-1-2- مفهوم سرمایه گذاری 12

2-1-3- فرایند سرمایه گذاری 12

2-1-4- روش های سرمایه گذاری 13

2-1-5- سهام عادی 13

2-1-6- نظریه سرمایه گذاری در بورس 14

2-1-7- بازده سرمایه گذاری 14

2-1-8- کارایی بازار سرمایه و اهمیت آن در ارزیابی سهام 15

2-2- پیش بینی 16

2-2-1- روش های پیش بینی کیفی 16

2-2-2- روش های پیش بینی کمی 16

2-2-3- انتخاب روش پیش بینی 16

2-2-4- روش بنیادی 17

2-2-5- روش پیش بینی سری های زمانی کلاسیک 18

2-2-6- روش های تکنیکال یا فنی 19

2-3- سیستم فازی 24

2-3-1- منطق فازی 24

2-3-1-1- مجموعه‌های فازی 25

2-3-1-2- عملگرهای مجموعه فازی 25

2-4- شبکه عصبی فازی 26

2-4-1- شبکه‌های عصبی مصنوعی 26

2-4-2- تاریخچه شبکه‌های عصبی مصنوعی 26

2-4-3- ویژگی و قابلیت‌های شبکه‌های عصبی مصنوعی 27

2-4-4- تعریف شبکه عصبی قازی 28

2-4-5- نرون‌های فازی 28

2-4-6- قوانین فازی 30

2-4-7-سیستم‌های استنتاج فازی 30

2-4-7-1- روش‌های فازی ساز 32

2-4-7-2- روش‌های غیر فازی ساز 35

2-4-7-3- سیستم استنتاج ممدانی 37

2-4-7-3- سیستم استنتاج تاکاگی-سوگنو 38

2-4-8-شبکه ‌های عصبی فازی چند لایه 39

2-4-9- شبکه ANFIS 39

2-4-9-1- مزایای ANFIS 41

2-4-10-‌ فرایند یادگیری در شبکه 42

2-4-10-1- الگوریتم‌یادگیری پس انتشار خطا 42

2-4-10-2- ایجاد ساختار اولیه FIS 43

2-4-10-3- فرایند یادگیری در شبکه ANFIS 44

2-4-11- اندازه گیری خطا در شبکه‌های عصبی 44

2-4-12- نرمالسازی خطی داده‌ها در فاصله [L,H] 46

2-5- پیشینه موضوع 47

2-5-1- بررسی کارآیی‌یا عدم کارآیی بازار 47

2-5-2- امکان سنجی بکارگیری شاخص‌های تحلیل تکنیکال در پیش‌بینی روند قیمت سهام 48

2-5-3- مروری بر پژوهشات صورت گرفته در زمینه پیش‌بینی متغیرهای اقتصادی و مالی با استفاده از سیستم‌های هوشمند 49

2-5-3-1- پژوهشات داخلی 49

2-5-3-2- پژوهشات خارجی 52

خلاصه 61

 

فصل سوم: روش پژوهش

مقدمه.. 62

3-1- اهداف پژوهش.. 63

3-2- متغیرهای پژوهش.. 63

3-3- فرضیه های پژوهش.. 65

3-4- نوع پژوهش.. 65

3-5- روش پژوهش.. 66

3-6- جامعه آماری.. 73

3-7- ابزار گردآوری داده ها.. 73

3-8- ابزار تجزیه و تحلیل.. 75

3-9- قلمرو پژوهش.. 75

خلاصه.. 75

 

فصل چهارم: تجزیه و تحلیل داده‌ها

مقدمه 76

4-1- انتخاب متغیرهای ورودی 77

4-1-1- نرمال سازی داده ها 77

4-1-2- شناسایی متغیرهای ورودی شبکه 77

4-2- پیش بینی شاخص های تحلیل تکنیکال با استفاده از شبکه عصبی فازی 81

4-2-1- انتخاب داده های آزمون و آموزش 81

4-2-2- طراحی شبکه عصبی فازی 81

4-2-3- ارزیابی عملکرد شبکه 82

4-2-3-1- ارزیابی عملکرد شبکه بر اساس معیار MSE 82

4-2-3-2- ارزیابی عملکرد شبکه بر اساس معیار RMSE 85

4-3- بررسی درصد صحت پیش بینی شبکه عصبی فازی 87

4-4- بررسی معناداری تفاوت میانگین بازدهی روش های معاملاتی 89

خلاصه 93

 

فصل پنجم: نتیجه گیری و پیشنهادها

مقدمه 94

6-1- خلاصه پژوهش 95

6-2- نتایج پژوهش 95

6-2- محدودیت های پژوهش 97

6-3- پیشنهادها 97

خلاصه 98

منابع فارسی 99

منابع انگلیسی 103

پیوست1 107

پیوست2 117


دانلود با لینک مستقیم


پایان نامه پیش‌بینی زمان بهینه انجام معاملات با استفاده از شبکه عصبی فازی: با رویکرد تحلیل تکنیکال

بهینه سازی پیش بینی لینک در شبکه های اجتماعی به کمک منطق فازی

اختصاصی از فایل هلپ بهینه سازی پیش بینی لینک در شبکه های اجتماعی به کمک منطق فازی دانلود با لینک مستقیم و پر سرعت .

بهینه سازی پیش بینی لینک در شبکه های اجتماعی به کمک منطق فازی

به صورت ورد ودر87صفحه

چکیده

امروزه محبوبیت سایت های شبکه های اجتماعی در بین افراد غیر قابل انکار است، سایت هایی که امکانات زیادی را برای ارتباطات بین افراد در اختیار کاربران قرار می دهند. یکی از مشکلات اساسی در آنالیز این نوع شبکه ها پیش بینی ارتباطات جدید بین افراد شبکه می باشد. روش فازی به عنوان یکی از روش های مطرح در هوش مصنوعی، راه ساده ای را برای ساخت نتیجه ی صریح، مبهم، نویزدار و مفقود شده را مهیا می سازد. در نتیجه منطق فازی به ابزاری برای مدل کردن پیچیدگی های دنیای واقعی بدل شده است. این مدل ها معمولا از موارد مشابه خود بسیار دقیق تر بوده و نتایج دقیق تری به ما ارائه می دهند. به همین دلیل منطق فازی پتانسیل لازم برای ارئه ی لینک پیشنهادی دقیق تر را خواهد داشت و چارچوبی که در این تحقیق ارائه خواهیم داد بر اساس این منطق توسعه خواهد یافت. با توجه به رویکرد های فوق ما در این تحقیق با ارائه ی چارچوبی پیشنهادی جهت ارائه ی الگوریتمی هوشمند بر اساس ترکیب منطق فازی با الگوریتم های CN، Jaccard ، PA که الگوریتم هایی برای پیش بینی لینک در گراف اجتماعی هستند، سعی در بهبود نتایج حاصله نمودیم. بررسی نتایج حاصله نشان داد که الگوریتم پیشنهادی دقت بیشتری در پیش بینی لینک داشته اما به دلیل وجود مراحل فازی و دفازی سازی، سرعت کمتری را دارا می باشد.


دانلود با لینک مستقیم


بهینه سازی پیش بینی لینک در شبکه های اجتماعی به کمک منطق فازی

دانلود پایان نامه آشنایی با الگوریتم بهینه سازی PSO و بکارگیری آن در پروسهCurve Fitting

اختصاصی از فایل هلپ دانلود پایان نامه آشنایی با الگوریتم بهینه سازی PSO و بکارگیری آن در پروسهCurve Fitting دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه آشنایی با الگوریتم بهینه سازی PSO و بکارگیری آن در پروسهCurve Fitting


دانلود پایان نامه  آشنایی با الگوریتم بهینه سازی PSO و بکارگیری آن در پروسهCurve Fitting

چکیده
فرض کنید شما و گروهی از دوستان تان به دنبال گنج می گردید هر یک از اعضای گروه یک فلزیاب و یک بی سیم دارند که می تواند مکان و وضعیت کار خود را به همسایگان نزدیک خود اطلاع بدهد بنابراین شما می دانید آیا همسایگان¬ تان از شما به گنج نزدیکترند یا نه ؟ پس اگر همسایه ای به گنج نزدیکتر بود شما می توانید به طرف او حرکت کنید. با چنین کاری تماس شما برای رسیدن به گنج بیشتر می شود و همچنین گنج زودتر از زمانی که شما تنها باشید پیدا می شود.
این یک مثال ساده از رفتار جمعی یا swarm behavior است که افراد برای رسیدن به یک هدف نهایی همکاری می کنند . این روش موثرتر از زمانی است که افراد جداگانه عمل کنند. Swarm را می توان به صورت مجموعه ای سازمان یافته از موجوداتی تعریف کرد که با یکدیگر همکاری می کنند. در کاربردهای محاسباتی swarm intelligence از موجوداتی مانند دسته ی پرندگان و مورچه ها ، زنبورها ، موریانه ها ، دسته ماهیان الگو برداری می شود . در این نوع اجتماعات هر یک از موجودات ساختار نسبتاً ساده ای دارند ولی رفتار جمعی آنها بی نهایت پیچیده است . برای مثال در کولونی مورچه ها هریک از مورچه ها یک کار ساده ی مخصوص را انجام می دهد ولی به طور جمعی عمل و رفتار مورچه ها ، ساختن بهینه لایه ، محافظت از ملکه و نوزادان ، تمیز کردن لانه ، یافتن بهترین منابع غذایی و بهینه سازی استراتژی حمله را تضمین می کند. رفتار کلی یک swarm به صورت غیر خطی از آمیزش رفتارهای تک تک اجتماع بدست می آید. یا به عبارتی یک رابطه ی بسیار پیچیده بین رفتار جمعی و رفتار فردی یک اجتماع وجود دارد. رفتار جمعی فقط وابسته به رفتار فردی افراد اجتماع نیست بلکه به چگونگی تعامل میان افراد نیز وابسته است . تعامل بین افراد ، تجربه ی افراد درباره ی محیط را افزایش می دهد و موجب پیشرفت اجتماع می شود . ساختار اجتماعی swarm بین افراد مجموعه کانال های ارتباطی ایجاد می کند که طی آن افراد می توانند به تبادل تجربه های شخصی بپردازند مدل سازی محاسباتی swarm، کاربردهای موفق و بسیار را در پی داشته است. به طور کلی موضوع پروژه رسم تابع تخمینی در بحث ریاضیات برای رسم یک سری داده با استفاده از نرم افزار متلب می باشد. جمعیتی که در این پروژه مورد مطالعه و بررسی قرار می گیرند با توجه به ماهیت پروژه یکسری داده مربوط به یک تابع مشخص می باشند که ما در هر مرحله نتایج را با مقادیر دادهها مقایسه کرده تا بتوانیم ذراتی تولید کرده که بهینه شده باشند و کمترین اختلاف را با جمعیت اولیه داشته باشند. برای این منظور پروژه تا حد ممکن طوری تنظیم شده که همه جنبه های اساسی موضوع چه از نظر کاربردی و چه از نظر تئوری را در بر گیرد. در بحث آشنایی با الگوریتم و تعاریف مربوط به آن سعی شده تا هرچه بیشتر موضوع باز شده و مثال هایی به همراه داشته باشد تا موضوع ساده و روان بوده و به راحتی قابل درک باشد.
کلمات کلیدی
بهینه سازی(Optimization)، تابع برا زنگی(fitness)، بهترین سراسری(g_best)،
بهترین شخصی(p_best)، الگوریتم بهینه سازی،کلونی

فصل اول: “آشنایی با برخی ازانواع الگوریتم های بهینه سازی ”
مقدمه ای بر بهینه سازی
۱- ۱ الگوریتم اجتماع پرندگان(particle swarm optimization Algorithm – pso)
۱-۲ الگوریتم ژنتیک(Genetic Algorithm – GA
۱-۳ الگوریتم کلونی مورچه ها(Aco- Ant colony optimization Algorithm
۱-۴ الگوریتم کلونی زنبور عسل(Abc-Artificial bee colony algorithm
۱-۵ الگوریتم چکه های آب هوشمند یا چکاه(Intelligent water Drops Algorithm -Iw
فصل دوم : ” الگوریتم(particle swarm optimization – pso) و
” Cooperative Particle swarm optimization – cpso) (
مقدمه
۲-۱ ماهیت الگوریتم
۲-۲ مفاهیم اولیه
۲-۳ فلو چارت
۲-۴ اطلاعات فنی
۲-۵ ساختار کلی
۲-۶ قاعده کلی توپولوژی همسایگی
۲-۷ نکات کلیدی
۲-۷-۱ خاصیت هوش جمعی
۲-۷-۲ هوش ذرات
۲-۷-۳ کنترل الگو ریتم
۲-۷-۴ تعداد ذرات
۲-۷-۵ محدوده ی ذرات
۲-۷-۶ شرایط توقف
۲- ۸ مزایا و کاربردهای الگو ریتم
۲-۹ ذرات swarm در تعدادی فضای واقعی
۲-۱۰مثال هایی از حرکت ذرات

۲-۱۰ مثالی از پرواز پرندگان برای یافتن غذا
۲-۱۱ الگوریتم Cooperative Particle swarm optimization
۲-۱۲ معرفی نرم افزار بکار رفته در شبیه سازی پروسه
فصل سوم: به ” بکار گیری cpsoو pso در پروسه ی Curve Fitting”
مقدمه
۳-۱ ماهیت کار
۳-۲ مراحل انجام کار به کمک الگوریتمpso
۳-۲-۱ بدست آوردن تابع برازندگی
۳-۲-۲ مشخص کردن اندازه جمعیت اولیه و ابعاد آن
۳-۲-۳ بررسی خروجی های بدست آمده از تابع Fitnessدر تکرار اول
۳-۲-۴ ایجاد لیست اول جهت نگهداری خروجی های بدست آمده
۳-۲-۵ پیدا کردن بهترین خروجی تابع Fitness و یافتن مکان آن در لیست اول
۳-۲-۶ آبدیت کردن سرعت و مکان ذرات با توجه به اینکه سرعت اولیه ذرات قبلا تعریف
۳-۲-۷ ایجاد لیست دوم جهت نگهداری خروجی های تابع Fitness در تکرار دوم
۳-۲-۸ پیدا کردن مکان بهترین ذره در جمعیت دوم
۳-۲-۹ مقایسه خروجی های تابع Fitness در دو تکرار اول
۳-۲-۱۰ پیدا کردن بهترین ذرات در دو جمعیت اول و دوم و تولید جمعیت سوم
۳-۲-۱۱ محاسبه تابع Fitness برای جمعیت سوم
۳-۲-۱۲ تکرار از مرحله پنجم الی یازدهم تا رسیدن به نقاط بهینه
۳-۳ مراحل انجام کار برای الگوریتمcpso
فصل چهارم : نتایج
۴-۱ انجام پروسه توسط الگوریتم pso
۴-۲ انجام پروسه توسط الگوریتم cpso
۴-۳ بررسی تفاوت بین psoوcpso
فصل پنجم: نتیجه گیری و پیشنهاد
۵-۱ نتیجه گیری
۵-۲ پیشنهاد
مراجع
پیوست


دانلود با لینک مستقیم


دانلود پایان نامه آشنایی با الگوریتم بهینه سازی PSO و بکارگیری آن در پروسهCurve Fitting