فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

سیستم ترمز قفل هوشمند بدون سنسور برای وسایل نقلیه الکتریکی بدون برخورد چرخ(جاروبک)

اختصاصی از فایل هلپ سیستم ترمز قفل هوشمند بدون سنسور برای وسایل نقلیه الکتریکی بدون برخورد چرخ(جاروبک) دانلود با لینک مستقیم و پر سرعت .

موتورهای بدون جاروبک به طور فراینده در طرح های متفاوت وسایل نقلیه الکتریکی چرخ دار (EVها)به کارگرفته میشوند.

دراین مقاله سیستم ترمزضد قفل بدون سنسور برای وسایل نقلیه الکتریکی بدون جاروبک چرخ پیشنهاد داده شده است. راه حل پیشنهاد شده نیاز به نصب سنسورهای جداگانه متداولABSرا درهرگوشه ازچرخ برطرف میکند.همچنین این مقاله هم به لحاظ نظری وخم عملی نشان میدهد که شکل کلی یک ولتاژ خروجی درسنسور متداولABS شبیه به نیروی الکتروموتیو عقب موتور بدون جاروبک(BLDC)می باشد.

این فایل در قال ورد و در 18 صفحه برای دانلود تهیه شده است.


دانلود با لینک مستقیم


سیستم ترمز قفل هوشمند بدون سنسور برای وسایل نقلیه الکتریکی بدون برخورد چرخ(جاروبک)

پروژه شبیه سازی موانع عقب خودرو با استفاده از 4 سنسور مافوق صوت

اختصاصی از فایل هلپ پروژه شبیه سازی موانع عقب خودرو با استفاده از 4 سنسور مافوق صوت دانلود با لینک مستقیم و پر سرعت .

پروژه شبیه سازی موانع عقب خودرو با استفاده از 4 سنسور مافوق صوت


پروژه شبیه سازی موانع عقب خودرو  با استفاده از 4 سنسور مافوق صوت

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 98

 

فهرست مطالب

عنوان                                                                                                            صفحه

فصل اول:

مقدمه..................................................................................................................... 1

  • ماهیت امواج صوتی و مافوق صوت .......................................................... 2
  • کاربردهای امواج مافوق صوت .................................................................. 4

فصل دوم : بلوک دیاگرام کلی پروژه

2-1- مدار فرستنده ............................................................................................. 12

2-2- مدار گیرنده ............................................................................................... 12

2-3- بخش کنترل ............................................................................................... 13

2-4- سیستم نمایشگر ......................................................................................... 13

فصل سوم : سنسورهای مافوق صوت

3-1- اثر پیزوالکتریک ......................................................................................... 16

3-2- ترانسدیوسرهای مافوق صوت و مشخصات 400ST/R160................... 17

فصل چهارم : فرستنده مافوق صوت

4-1- نوسان ساز ................................................................................................. 22

4-2- مدار بافر .................................................................................................... 31

4-3- مدار کلید زنی (سوئیچینگ ترانزیستوری )................................................. 35

4-4- رله آنالوگ – دیجیتال ................................................................................ 40

4-5- طراحی مدار بهینه برای فرستنده ................................................................ 42

فصل پنجم : گیرنده مافوق صوت

5-1- تقویت کننده طبقه اول ............................................................................... 46

5-2- فیلتر(میانگذر) با فرکانس مرکزی 40KHZ ............................................. 47

5-3- تقویت کننده طبقه دوم ............................................................................... 49

5-4- مدار تولید پالس منطقی (اشمیت تریگر ).................................................... 50

فصل ششم: بخش کنترل

6-1- خصوصیات میکروکنترلر ATMEGA32 .............................................. 54

6-2- ورودی – خروجی .................................................................................... 57

6-3- منابع کلاک ................................................................................................ 58

6-4- بررسی پورتهای میکروکنترلر ATMEGA32......................................... 61

6-5- برنامه نویسی میکروکنترلر ATMEGA32 ............................................ 68

فصل هفتم: سیستم نمایشگر

7-1- معرفی پین های LCD گرافیکی ............................................................... 74

فصل هشتم : طراحی سیستم های نمایشگر فضای عقب خودرو

8-1- نمایشگر فضای عقب خودرو ..................................................................... 79

8-2- برنامه نهایی میکروکنترلر ........................................................................... 84

فصل نهم : نتیجه گیری و پیشنهادات

نتیجه گیری و پیشنهادات ...................................................................................... 92

منابع و مآخذ ......................................................................................................... 93

 

چکیده :

در این پروژه با استفاده از 4 سنسور مافوق صوت به شبیه سازی موانع عقب خودرو
می پردازیم این سیستم در خودروهای سنگین که امکان دیدن فضای پشت اتومبیل در آیینه عقب ندارند کاربرد مناسبی خواهد داشت چگونگی کارکرد این پروژه به این صورت است که موج مافوق صوت به وسیله فرستنده ارسال می گردد همزمان یک تایر در میکرو راه اندازی می شود زمانی که موج ارسالی به مانع برخورد کرد و در گیرنده دریافت شد میکرو تایمر را متوقف می کند زمان اندازه گیری شده توسط تایمر عبارت است از زمان رفت و برگشت موج که نصب این زمان ، زمان رفت موج خواهد بود حاصل ضرب این زمان در سرعت موج مافوق صوت فاصله مانع تا سنسور را به ما می دهد که براساس آن به مدل کردن خودرو نسبت به موانع می پردازیم.


دانلود با لینک مستقیم


پروژه شبیه سازی موانع عقب خودرو با استفاده از 4 سنسور مافوق صوت

دانلود تحقیق کامل درباره سنسور

اختصاصی از فایل هلپ دانلود تحقیق کامل درباره سنسور دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 55

 

SENSOR

سنسورها المان حس کننده یک سیستم می باشد که کمیت های فیزیکی مانند فشار، حرارت، رطوبت، فلو و..... را به کمیت های الکتریکی پیوسته یا غیرپیوسته و یا حتی کمیت غیرالکتریکی( مانند تغییر مقاومت داخلی سنسور) تبدیل می کند. این سنسورها در انواع دستگاه هایی اندازه گیری و سیستمهای کنترل آنالوگ و دیجیتال مانند PLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاه های مختلف از جمله PLC باعث شده است که سنسور بخشی از اجزای جدانشدنی دستگاه کنترل اتوماتیک باشد. سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاه ها می شوند.

در این بخش، ابتدا به توضیح روشهای اندازه گیری چهار کمیت مهم حرارت، جریان(Flow )، سطح ارتفاع (Level) و فشار می پردازیم و درپایان درباره سوئیچ های بدون تماس صحبت خواهیم کرد.

1) اندازه گیری درجه حرارت

برای اندازه گیری درجه حرارت از آشکارسازهای مختلفی استفاده می شود. که در دو گروه کلی زیر طبقه بندی می شوند:

آشکارسازهایی که با سیال در تماس هستند.

آشکارسازهایی که با سیال در تماس نیستند.

آشکارسازهایی که با سیال در تماس هستند

این آشکارسازها که در آنها از روش تماس سیال با المنت اخذکننده در جه حرارت استفاده می شود شامل انواع زیر می باشند:

1-1-1) ترموکوپل

یکی از عمومی ترین وسائل حساس در مقابل درجه حرارت ترموکوپل می باشد. داستان ترموکوپل به کشف See beck در سال 1821 در مورد وجود یک جریان الکتریکی در مدار بسته ای از دو فلز غیرهمجنس در حالیکه دو نقطه اتصال در درجه حرارت های مختلف باشد برمی گردد. چنین ترموکوپلی در شکل زیر نشان داده شده است.

در اینجا A و B دو فلز و T1 و T2 درجه حرارت های نقاط اتصال آنها می باشند. I نشان دهنده جریان ترموالکتریکی است که در مدار جاری است. معمولاً A نسبت به B در صورتی که T1 اتصال سردتر باشد، از لحاظ ترموکوپلی مثبت و خوانده می شود.

اثرات ترموالکتریک

آگاهی از وجود اثر کشف شده به وسیله See beck گشاینده راه برای کاربرد این دانش در اندازه گیری اختلاف درجه حرارت موجود بین اتصالات دو سیم بود. قبل از بحث مفصل در مورد پیشرفت های این وسیله به ذکر دو اثر ترموالکتریک ترکیب شده برای تولید جریان ترموالکتریک می پردازیم.

اثر peltier

این اثر بوسیله Peltier در سال 1834 کشف شده است. این اثر دفع یا جذب حرارت در یک اتصال دو فلز غیرهمجنس را هنگامی که جریانی در طول این اتصال جاری است بیان می نماید. در صورتی که جهت جریان معکوس گردد، علامت اثر حرارت نیز معکوس خواهد شد. بررسی بیشتر این اثر آشکار می سازد که مقدار حرارتی که جذب یا دفع می شود متناسب با جریان بوده وضریب تناسب بستگی به درجه حرارت و جنس ترموکوپل دارد. بنابراین مقدار حرارت انتقالی از اتصال یا به اتصال بوسیله PI نشان داده می شود که در اینجا P ضریب Peltier به وات و آمپر یا بصورت ساده تر نیروی الکترو موتوریPeltier (EMF) برحسب وات می باشد.

اثر تامسون

این اثر شامل جذب با دفع حرارت در هنگام جاری بودن جریان در فلزهای همجنس در صورت وجود تدریجی حرارت می باشد. اثر تامسون بطور معکوس نیز صدق می کند و اگر جهت جریان تغییر نماید، علامت اثر حرارت نیز معکوس خواهد شد. حرارت تامسون ظاهر شده در یک زمان معین و در یک ناحیه کوچک از هادی متناسب با جریان و اختلاف درجه حرارت در طول آن ناحیه می باشد. ضریب تناسب بستگی به درجه حرارت و جنس هادی دارد. بنابراین مقداری از حرارت که دریک ناحیه کوچک از هادی حامل جریان I و اختلاف درجه حرارت جذب یا دفع می گردد، معادل می باشد که در آن ضریب تامسون به وات بر آمپر بر درجه یا نیروی الکتروموتوری (EMF) تامسون به ولت بر درجه نامیده می شود.

پس از مباحث بالا نتیجه گیری می شود که برای دو فلز با جنس معین جریان I متناسب با اختلاف درجه حرارت در دو نقطه اتصال می باشد. حال در صورتی که یکی از نقاط اتصال را در صفر درجه نگهداریم جریان متناسب با درجه حرارت نقطه دیگر خواهد بود. در اینجا سری را که درجه حرارت آن ثابت نگهداشته می شود، اتصال سرد یا اتصال مقایسه و سر دیگر را اتصال گرم می گویند.

فاکتورهای مؤثر در انتخاب فلز ترموکوپل

برای دو فلز ترموکوپل از جنسهای مختلفی می توان استفاده نمودکه هرکدام از آنها دارای خصوصیات مربوط به خود می باشند. فاکتورهایی که در انتخاب جنس ترموکوپل مؤثرند عبارتند از:

الف) محدودیت های درجه حرارت

ب) روابط خطی بین درجه حرارت و EMF

ج) مقدار EMF نسبت به هر درجه تغییر حرارت

1) حد خطا و حساسیت

2) قابلیت پس گیری

3) دقت

د) مقاومت فیزیکی در درجه حرارت بالا


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره سنسور

مدل energy efficient مبنی بر تراکم داده‌ها برای شبکه های سنسور بی سیم

اختصاصی از فایل هلپ مدل energy efficient مبنی بر تراکم داده‌ها برای شبکه های سنسور بی سیم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 46

 

موضوع:

مدل energy- efficient مبنی بر تراکم داده‌ها برای شبکه های سنسور بی سیم

چکیده:

تراکم داده ها در شبکه های سنسور بی سیم افزونگی را حذف می کند تا مصرف پهنای باند و بازده انرژی گوه ها را توسعه دهد. این مقاله یک پروتکل تراکم داده های energy- efficient امن را که (Energy- Efficient Secure Pattern based Data Aggregation) ESPDA الگوی امن energy- efficient بر پایة تراکم داده ها) نامیده می شود ارائه می کند. برخلاف تکنیکهای تراکم داده های قراردادی، ESPDA از انتقال داده های اضافی از گره های سنسور به cluster- headها جلوگیری می کند. اگر گره های سنسور همان داده ها را تشخیص داده و دریافت کنند، ESPDA ابتدا تقریباً یکی از آنها را در وضعیت خواب (sleep mode) قرار می دهد و کدهای نمونه را برای نمایش مشخصات داده های دریافت و حس شده توسط گره های سنسور تولید می کند. Cluster- head ها تراکم داده ها را مبنی بر کدهای نمونه اجرا می کند و فقط داده های متمایز که به شکل متن رمز شده هستند از گره های سنسور به ایستگاه و مکان اصلی از طریق Cluster- headها انتقال یافته است. بعلت استفاده از کدهای نمونه، Cluster- headها نیازی به شناختن داده های سنسور برای اجرای تراکم داده‌ها ندارند. زیرا به گره های سنسور اجازه می دهد تا لینک های ارتباطی سرهم پیوسته (end-to-end) امن را برقرار کنند. بنابراین، نیازی برای مخفی سازی/ آشکار سازی توزیع کلید مابین Cluster- head ها و گره های سنسور نیست. بعلاوه، بکار بردن تکنیک NOVSF block- Hopping، امنیت را بصورت تصادفی با عوض کردن با نگاشت بلوک های داده ها به time slotهای NOVSF اصلاح کرده و آن را بهبود می بخشد. ارزیابی کارایی نشان می دهد که ESPDA روش های تراکم داده های قراردادی را به بیش از 50% در راندمان پهنای باند outperform می کند.

1- مقدمه: شبکه های سنسور بی سیم، بعنوان یک ناحیه و منطقة جدید مهم در تکنولوژی بی سیم پدیدار شده اند. در آیندة نزدیک، شبکه های سنسور بی سیم منتظر هزاران گره ارزان و کم هزینه و داشتن هر توانایی (Sensing capability) sensing با توان ارتباطی و محاسباتی محدود شده بوده اند. چنین شبکه های سنسوری منتظر بوده اند تا در بسیاری از موارد در محیط های عریض گوناگونی برای کاربردهای تجاری، شخصی و نظامی از قبیل نظارت، بررسی وسیلة نقلیه و گردآوری داده های صوتی گسترش یافته باشند. محدودیتهای کلید شبکه های سنسور بی سیم، ذخیره سازی، توان و پردازش هستند. این محدودیتها و معماری ویژه گره های سنسور مستلزم انرژی موثر و پروتکلهای ارتباطی امن هستند. امکان و اجرای این شبکه های سنسور کم هزینه با پیشرفت هایی در MEMS (سیستم های میکرومکانیکی micro electromechanical system)، ترکیب شده با توان کم، پردازنده های سیگنال دیجیتالی کم هزینه (DSPها) و مدارهای فرکانس رادیویی (RF) تسریع شده اند.

چالش های کلید در شبکه های سنسور، برای بیشینه کردن عمر گره های سنسور به علت این امر است که برای جایگزین کردن و تعویض باطری های هزاران گره سنسور امکان پذیر نیست. بنابراین عملیات محاسباتی گره ها و پروتکلهای ارتباطی باید به اندازة انرژی موثر در صورت امکان ساخته شده باشد. در میان این پروتکلها،


دانلود با لینک مستقیم


مدل energy efficient مبنی بر تراکم داده‌ها برای شبکه های سنسور بی سیم

سنسور

اختصاصی از فایل هلپ سنسور دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

سنسور چیست؟

سنسور المان حس کننده ای است که کمیتهای فیزیکی مانند فشار، حرارت، رطوبت، دما، و ... را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل می کند. این سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانند PLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاه های مختلف از جمله PLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد. سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاهها می شوند.

سنسورهای بدون تماس

سنسورهای بدون تماس سنسورهائی هستند که با نزدیک شدن یک قطعه وجود آنرا حس کرده و فعال می شوند. این عمل به نحوی که در شکل زیر نشان داده شده است می تواند باعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم گردد.

کاربرد سنسورها

1- شمارش تولید: سنسورهای القائی، خازنی و نوری

2- کنترل حرکت پارچه و ... سنسور نوری و خازنی

3- کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح

4- تشخیص پارگی ورق: سنسور نوری

5- کنترل انحراف پارچه: سنسور نوری و خازنی

6- کنترل تردد: سنسور نوری

7- اندازه گیری سرعت: سنسور القائی و خازنی

8- اندازه گیری فاصله قطعه: سنسور القائی آنالوگ

مزایای سنسورهای بدون تماس

سرعت سوئیچینگ زیاد: سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، بطوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا 25KHz کار می کنند.

طول عمر زیاد : بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار و ... دارای طول عمر زیادی هستند.

عدم نیاز به نیرو و فشار با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو و فشار نیازی نیست.

قابل استفاده در محیطهای مختلف با شرایط سخت کاری: سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و ... قابل استفاده می باشند.

عدم ایجاد نویز در هنگام سوئیچینگ: به دلیل استفاده از نیمه هادی ها در طبقه خروجی، نویزهای مزاحم (Bouncing Noise) ایجاد نمی شود.

سنسورهای القائی

سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی مانند PLC) ) ارسال نمایند.

اساس کار و ساختمان سنسورهای القائی

ساختمان این سنسورها از چهار طبقه تشکیل می شود: اسیلاتور، دمدولاتور، اشمیت تریگر، تقویت خروجی. قسمت اساسی این سنسورها از یک اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاثیر قرار گیرد. این اسیلاتور باعث بوجود آمدن میدان الکترومغناطیسی در قسمت حساس سنسور می شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد. از آنجا که طبقه دمدلاتور، آشکارساز دامنه اسیلاتور است در نتیجه کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود. کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود.

نوع دیگری از سنسور خازنی که توانایی اندازه گیری ضخامت را دارد بر اساس تغییر خاصیت دی الکتریکی خازن به ضخامت متریال پی می برد.در زیر با دو نمونه از این نوع سنسور آشنا می شویم.

همان طور که از شکل قابل فهم است با حرکت دادن ماده پایه ای که لایه مورد نظر بر روی آن قرار دارد،ماده دی الکتریک که روی ان لایه نشانی شده نیز حرکت می کند. و خازن ایجاد شده بین الکترود و ماده پایه با توجه به قطر ماده لایه نشینی شده(به عنوان دی الکتریک) تغییر می کند.از روی این تغییر همانند آن چه در قبل گفتیم به


دانلود با لینک مستقیم


سنسور