![دانلود تحقیق شبیهسازی حرارتی](../prod-images/699556.jpg)
تعداد صفحات : 23 صفحه -
قالب بندی : word
چکیده
در این تحقیق ما به بررسی یکی از روشهای بهینهسازی حل مسئله به نامSimulated Annealing میپردازیم. SA در واقع الهام گرفته شده از فرآیند ذوب و دوباره سرد کردن مواد و به همین دلیل به شبیهسازی حرارتی شهرت یافته است. در این تحقیق ادعا نشده است که SA لزوماً بهترین جواب را ارائه میکند. بلکه SA به دنبال یک جواب خوب که میتواند بهینه هم باشد میگردد. SA در حل بسیاری از مسائل بخصوص مسائل Np-Complete کاربرد دارد. در پایان روش حل مسئلهی فروشندهی دوره گرد[1] در SA بطور مختصر آورده شده است.
فهرست مطالب
عنوان شماره صفحه
5- رابطهی بین SA و حرارت فیزیکی.. 11
3-7. کاهش درجه حرارت در هر مرحله. 14
1- مقدمه
سیستمهای پیچیده اجتماعی تعداد زیادی از مسائل دارای طبیعت ترکیباتی[2] را پیش روی ما قرار میدهند. مسیر کامیونهای حمل و نقل باید تعیین شود، انبارها یا نقاط فروش محصولات باید جایابی شوند، شبکههای ارتباطی باید طراحی شوند، کانتینرها باید بارگیری شوند، رابطهای رادیویی میبایست دارای فرکانس مناسب باشند، مواد اولیه چوب، فلز، شیشه و چرم باید به اندازههای لازم بریده شوند؛ از این دست مسائل بیشمارند. تئوری پیچیدگی به ما میگوید که مسائل ترکیباتی اغلب پلینومیال[3] نیستند. این مسائل در اندازههای کاربردی و عملی خود به قدری بزرگ هستند که نمیتوان جواب بهینه آنها را در مدت زمان قابل پذیرش به دست آورد. با این وجود، این مسائل باید حل شوند و بنابراین چارهای نیست که به جوابهای زیر بهینه[4] بسنده نمود به گونهای که دارای کیفیت قابل پذیرش بوده و در مدت زمان قابل پذیرش به دست آیند.
چندین رویکرد برای طراحی جوابهای با کیفیت قابل پذیرش تحت محدودیت زمانی قابل پذیرش پیشنهاد شده است. الگوریتمهایی هستند که میتوانند یافتن جوابهای خوب در فاصله مشخصی از جواب بهینه را تضمین کنند که به آنها الگوریتمهای تقریبی میگویند. الگوریتمهای دیگری نیز هستند که تضمین میدهند با احتمال بالا جواب نزدیک بهینه تولید کنند که به آنها الگوریتمهای احتمالی گفته میشود. جدای از این دو دسته، میتوان الگوریتمهایی را پذیرفت که هیچ تضمینی در ارائه جواب ندارند اما براساس شواهد و سوابق نتایج آنها، به طور متوسط بهترین تقابل کیفیت و زمان حل برای مسئله مورد بررسی را به همراه داشتهاند. به این الگوریتمها، الگوریتمهای هیوریستیک گفته میشود.
هیوریستیکها عبارتند از معیارها، روشها یا اصولی برای تصمیمگیری بین چند گزینه خطمشی و انتخاب اثربخشترین برای دستیابی به اهداف مورد نظر. هیوریستیکها نتیجه برقراری اعتدال بین دو نیاز هستند: نیاز به ساخت معیارهای ساده و در همان زمان توانایی تمایز درست بین انتخابهای خوب و بد. برای بهبود این الگوریتمها از اواسط دهه هفتاد، موج تازهای از رویکردها آغاز گردید. این رویکردها شامل الگوریتمهایی است که صریحاً یا به صورت ضمنی تقابل بین ایجاد تنوع جستجو (وقتی علائمی وجود دارد که جستجو به سمت مناطق بد فضای جستجو میرود) و تشدید جستجو (با این هدف که بهترین جواب در منطقه مورد بررسی را پیدا کند) را مدیریت میکنند. این الگوریتمها متاهیوریستیک نامیده میشوند. از بین این الگوریتمها میتوان به موارد زیر اشاره کرد:
بازپخت شبیهسازی شده[5]
جستجوی ممنوع[6]
الگوریتمهای ژنتیک[7]
شبکههای عصبی مصنوعی[8]
بهینهسازی مورچهای یا الگوریتمهای مورچه[9]
در این تحقیق ما به بررسی بازپخت شبیهسازی شده (شبیهسازی حرارتی) میپردازیم.
SA چیست؟
SA مخفف Simulated Annealing به معنای شبیهسازی گداخت یا شبیهسازی حرارتی میباشد که برای آن از عبارات شبیهسازی بازپخت فلزات، شبیهسازی آب دادن فولاد و الگوریتم تبرید نیز استفاده شده است. برخی مسائل بهینهسازی صنعتی در ابعاد واقعی غالباً پیچیده و بزرگ میباشند. بنابراین روشهای حل سنتی و استاندارد، کارایی لازم را نداشته و عموماً مستلزم صرف زمانهای محاسباتی طولانی هستند. خوشبختانه، با پیشرفت فنآوری کامپیوتر و ارتقا قابلیتهای محاسباتی، امروزه استفاده از روشهای ابتکاری و جستجوگرهای هوشمند کاملاً متداول گردیده است. یکی از این روشها SA است. SA شباهت دارد با حرارت دادن جامدات. این ایده ابتدا توسط شخصی که در صنعت نشر فعالیت داشت به نام متروپلیس[10] در سال 1953 بیان شد.[10] وی تشبیه کرد کاغذ را به مادهای که از سرد کردن مواد بعد از حرارت دادن آنها بدست میآید. اگر یک جامد را حرارت دهیم و دمای آن را به نقطه ذوب برسانیم سپس آن را سرد کنیم جزئیات ساختمانی آن به روش و نحوه سرد کردن آن وابسته میشود. اگر آن جامد را به آرامی سرد کنیم کریستالهای بزرگی خواهیم داشت که میتوانند آن طور که ما میخواهیم فرم بگیرند ولی اگر سریع سرد کنیم آنچه که میخواهیم بدست نمیآید.
الگوریتم متروپلیس شبیهسازی شده بود از فرآیند سرد شدن مواد به وسیله کاهش آهسته دمای سیستم (ماده) تا زمانی که به یک حالت ثابت منجمد تبدیل شود. این روش با ایجاد و ارزیابی جوابهای متوالی به صورت گام به گام به سمت جواب بهینه حرکت میکند. برای حرکت، یک همسایگی جدید به صورت تصادفی ایجاد و ارزیابی میشود. در این روش به بررسی نقاط نزدیک نقطه داده شده در فضای جستجو میپردازیم. در صورتی که نقطه جدید، نقطه بهتری باشد (تابع هزینه را کاهش دهد) به عنوان نقطه جدید در فضای جستجو انتخاب میشود و اگر بدتر باشد (تابع هزینه را افزایش دهد) براساس یک تابع احتمالی باز هم انتخاب میشود. به عبارت سادهتر، برای کمینه سازی تابع هزینه، جستجو همیشه در جهت کمتر شدن مقدار تابع هزینه صورت میگیرد، اما این امکان وجود دارد که گاه حرکت در جهت افزایش تابع هزینه باشد.
دانلود تحقیق شبیهسازی حرارتی