
اموزش شناخت اجزا رفع عیوب و خرابی سشوار...به زبان ساده
اموزش شناخت اجزا رفع عیوب و خرابی سشوار
اموزش شناخت اجزا رفع عیوب و خرابی سشوار...به زبان ساده
شرح مختصر : امروزه پایش وضعیت تولیدات مکانیکی مخصوصاً ماشین های دوار ، به منظور بالا بردن سطح کیفی و اطمینان از صحت عملکرد آنها ، کاربرد زیادی پیدا کرده است . در این راستا سیستم های مبتنی بر هوش مصنوعی به طور گسترده ای برای یافتن عیوب پیش آمده مورد استفاده قرار گرفته اند . ولی پراکندگی موجود در انواع روش های بکارگرفته شده ، انتخاب یک روش کاربردی را مشکل ساخته است . به همین علت در این پژوهش مطالعه ای بر روی طیف وسیعی از این روش ها که اغلب در سال های اخیر مطرح شده اند ، صورت گرفته است .همچنین در رابطه با پیشینه و تئوری آنها مطالبی بیان شده است . سپس برای یافتن راهکاری مناسب ، مزایا و معایب هر روش در جدول هایی گردآوری شده و در نهایت تحت یک مدل مقایسه ای ارزیابی شده اند . تلاش شده این مزایا و معایب بر پایه ی مکتوبات و مستندات سال های اخیر جمع آوری شود . نتایج نشان می دهد که برای یافتن عیوب یک چرخ دنده ، بکار گیری سیگنال ارتعاشی و آنالیز موجک بسته ای به همراه روش PCA برای انتخاب ویژگی های موثر و شبکه ی عصبی برای تفکیک عیوب ، بسیار مناسب می باشد . در پایان این پژوهش برای یافتن سلامت چرخ دنده ی یک جعبه دنده ی نمونه از توالی روش های گفته شده استفاده گردیده و نتایج آن نشان داده شده است