فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

شبیه سازی میرا کنندگی نوسان توان با TCSC با استفاده از الگوریتم ژنتیک

اختصاصی از فایل هلپ شبیه سازی میرا کنندگی نوسان توان با TCSC با استفاده از الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

شبیه سازی میرا کنندگی نوسان توان با TCSC با استفاده از الگوریتم ژنتیک


شبیه سازی میرا کنندگی نوسان توان با TCSC با استفاده از الگوریتم ژنتیک

در این مقاله نحوه تنظیم PSS و میراگر POD در یک سیستم قدرت تک ماشینه (SMIB) مجهز به TCSC شرح داده می شود وکنترل کننده مهم و موثری با استفاده از طرحهای PSS و PODبرای بهبود پایداری سیستم قدرت پیشنهاد شده است. یک جبرانگر پیشفاز-پسفاز دو طبقه برای ساختار PSS در نظر گرفته شده است و یک طرح کنترلی جدید با استفاده از کنترل بهینه خطی برای طراحی POD پیشنهاد شده است. برای تعیین پارامترهای کنترل کننده POD از الگوریتم ژنتیک استفاده شده است. دینامیک و پایداری سیستم مذکور در حضور یک اغتشاش (تغییر 20% در بار) مورد بررسی قرار گرفته است. نتایج شبیه سازی نشان می دهد که حضور TCSC در سیستم قدرت مجهز به کنترل کننده مذکور ظرفیت بسیاری را برای بهبود پایداری داراست. کاهش 45% در ماکزیمم فراجهش و 16% در زمان نشست با اعمال کنترل کننده فوق حاصل شده است و نیز قطبهای غالب سیستم به نواحی پایدارتری انتقال می یابند. این نتایج نشان می دهد که کنترل بهینه پیشنهادی مذکور دارای عملکرد خوبی است. همچنین نقش POD غالبر از PSSمی باشد، هر چند هر دو به طور همزمان بر هم کنش مثبتی دارند.

 

قسمتی از نتایج شبیه سازی

 

 


دانلود با لینک مستقیم


شبیه سازی میرا کنندگی نوسان توان با TCSC با استفاده از الگوریتم ژنتیک

تحقیق در مورد اصل ژنتیک و همانندسازی

اختصاصی از فایل هلپ تحقیق در مورد اصل ژنتیک و همانندسازی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد اصل ژنتیک و همانندسازی


تحقیق در مورد اصل ژنتیک و همانندسازی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه44

 

بخشی از فهرست مطالب

اصل ژنتیک

 

رنگ پوست در اصل، به ژنتیک و زمینه ارثی ما بستگی دارد. اما علاوه بر آن، تنها عاملی که به‌ طور طبیعی امکان دارد ...

 

عوامل موثر بر رنگ پوست

 

رنگ پوست در اصل، به ژنتیک و زمینه ارثی ما بستگی دارد. اما علاوه بر آن، تنها عاملی که به‌ طور طبیعی امکان دارد به تغییر رنگ پوست ما منجر شود، نور آفتاب است.

 

بی‌ خوابی نیز می ‌تواند در رنگ پوست ما تغییرات گذرایی ایجاد کند.

 

برخی از بیماری ‌ها که تغییراتی در جریان خون ایجاد می کنند نیز قادرند رنگ پوست ما را دچار تغییر نمایند؛ مثلا در مبتلایان به کمبود آهن، رنگ پوست پریده و با ته ‌رنگ زرد نمایان می ‌شود.

 

   همان‌طور که بارها ذکر شده، مصرف سیگار علاوه بر ایجاد زودرس چین و چروک می ‌تواند به تغییر رنگ پوست و از دست رفتن شفافیت آن منجر شود؛ مانند ایجاد رنگ زرد مایل به قهوه‌ای در پوست، کبودی لب ‌ها و نازیبایی دندان‌‌ ها

 

اما این تصور که نوع تغذیه می ‌تواند بر رنگ پوست افراد تاثیر بگذارد، غلط است.

 

بعضی ‌ها معتقدند نوع تغذیه و یا میزان مصرف آب در روز، تغییراتی را روی رنگ پوست ایجاد می‌ کند. البته از آن جا که سلو‌ل‌ ها در داخل خود و در محیط اطراف ‌شان آب دارند، شکی نیست که مصرف مایعات کافی در طول روز به سلامت و شادابی همه ارگان‌ های بدن و از جمله پوست کمک می کند. به همین دلیل در اسهال شدید و هنگام کم‌ آبی بدن، پوست چروک خورده و بدرنگ می ‌شود.

 

 

 

  اگر تغذیه سالم، استراحت کافی و پرهیز از کشیدن سیگار را جزء لاینفک زندگی روزانه خود قرار دهید، بدون شک می ‌توانید پوستی با رنگ طبیعی و شاداب داشته باشید

 


دانلود با لینک مستقیم


تحقیق در مورد اصل ژنتیک و همانندسازی

پروژه داده کاوی و کاربرد الگوریتم های ژنتیک در داده کاوی و WEB کاوی. doc

اختصاصی از فایل هلپ پروژه داده کاوی و کاربرد الگوریتم های ژنتیک در داده کاوی و WEB کاوی. doc دانلود با لینک مستقیم و پر سرعت .

پروژه داده کاوی و کاربرد الگوریتم های ژنتیک در داده کاوی و WEB کاوی. doc


پروژه داده کاوی و کاربرد الگوریتم های ژنتیک در داده کاوی و WEB  کاوی. doc

 

 

 

 

نوع فایل: word

قابل ویرایش 162 صفحه

 

مقدمه:

داده کاوی پل ارتباطی میان علم آمار، علم کامپیوتر، هوش مصنوعی، الگوشناسی، فراگیری ماشین و بازنمایی بصری داده می باشد . داده کاوی فرآیندی پیچیده جهت شناسایی الگوها و مدل های صحیح ، جدید و به صورت بالقوه مفید ودر حجم وسیعی از داده می باشد، به طریقی که این الگو ها و مدلها برای انسانها قابل درک باشند . داده کاوی به صورت یک محصول ، قابل خریداری نمی باشد ، بلکه یک رشته علمی و فرآیندی است که بایستی به صورت یک پروژه پیاده سازی شود .

داده ها اغلب حجیم می باشند و به تنهایی قابل استفاده نیستند، بلکه دانش نهفته در داده ها قابل استفاده می باشد . بنابراین بهره گیری از قدرت فرآیند داده کاوی جهت شناسایی الگوها و مدلها و نیز ارتباط عناصر مختلف در پایگاه داده جهت کشف دانش نهفته در داده ها و نهایتا تبدیل داده به اطلاعات ، روز به روز ضروری تر می شود .

یکی از نمونه های بارز داده کاوی را می توان در فروشگاه های زنجیره ای مشاهده نمود، که در آن سعی می شود ارتباط محصولات مختلف هنگام خرید مشتریان مشخص گردد . فروشگاه های زنجیره ای مشتاقند بدانند که چه محصولاتی با یکدیگر به فروش می روند .

برای مثال طی یک عملـیات داده کاوی گستـرده در یـک فروشـگاه زنجیره ای در آمریکای شمالی که بر روی حجـم عظیمـی از داده های فروش صورت گرفت، مشخص گردید که مردانی که برای خرید قنداق بچه به فروشگاه می روند معمولا آب جو نیز خریداری می کنند . همچنین مشخص گردید مشتریانی که تلویزیون خریداری می کنند، غالبا گلدان کریستالی نیز می خرند . نمونه مشابه عملیات داده کاوی را می توان در یک شرکت بزرگ تولید و عرضه پوشاک در اروپا مشاهده نمود به شکلی که نتایج داده کاوی مشخص می کرد که افرادی که کراوات های ابریشمی خریداری می کنند در همان روز یا روزهای آینده گیره کراوات مشکی رنگ نیز خریداری می کنند .

به روشنی این مطلب قابل درک است که این نوع استفاده از داده کاوی می تواند فروشگاه ها را در برگزاری هوشمندانه فستیوال های فروش و نحوه ارائه اجناس به مشتریان یاری رساند .

نمونه دیگر استفاده از داده کاوی در زمینه فروش را می توان در یک شرکت بزرگ دوبلاژ و تکثیر و عرضه فیلم های سینمایی در آمریکای شمالی مشاهده نمود که در آن عملیات داده کاوی، روابط مشتریان و هنرپیشه های سینمایی و نیز گروه های مختلف مشتریان بر اساس سبک فیلم ها ( ترسناک ، رمانتیک ، حادثه ای و ...) مشخص گردید .

بنابراین آن شرکت به صورت کاملاً هوشمندانه می توانست مشتریان بالقوه فیلم های سینمایی را بر اساس علاقه مشتریان به هنرپیشه های مختلف و سبک های سینمایی شناسایی کند .

از دیگر زمینه های به کارگیری داده کاوی، استفاده بیمارستانها و کارخانه های داروسازی جهت کشف الگوها و مدلهای ناشناخته تاثیر دارو ها بر بیماری های مختلف و نیز بیماران گروه های سنی مختلف را می توان نام برد .

ستفاده از داده کاوی در زمینه های مالی و بانکداری به شناخت مشتریان پر خطر و سودجو بر اساس معیار هایی از جمله سن، درآمد، وضعیت سکونت، تحصیلات، شغل و غیره می انجامد .

در دو دهه قبل توانایی های فنی بشر برای تولید و جمع آوری داده‌ها به سرعت افزایش یافته است . عواملی نظیر استفاده گسترده از بارکد برای تولیدات تجاری،  به خدمت گرفتن کامپیوتر در کسب و کار، علوم، خدمات دولتی و پیشرفت در وسائل جمع آوری داده از اسکن کردن متون و تصاویر تا سیستمهای سنجش از دور ماهواره ای در این تغییرات نقش مهمی دارند .

بطور کلی استفاده همگانی از وب و اینترنت به عنوان یک سیستم اطلاع رسانی جهانی ما را مواجه با حجم زیادی از داده و اطلاعات می‌کند . این رشد انفجاری در داده‌های ذخیره شده، نیاز مبرم وجود تکنولوژی های جدید و ابزارهای خودکاری را ایجاد کرده که به صورت هوشمند به انسان یاری رسانند تا این حجم زیاد داده را به اطلاعات و دانش تبدیل کند : داده کاوی به عنوان یک راه حل برای این مسائل مطرح می باشد . در یک تعریف غیر رسمی داده کاوی فرآیندی است خودکار برای استخراج الگوهایی که دانش را بازنمایی می کنند که این دانش به صورت ضمنی در پایگاه داده های عظیم، انباره داده و دیگر مخازن بزرگ اطلاعات، ذخیره شده است . داده کاوی بطور همزمان از چندین رشته علمی بهره می برد نظیر: تکنولوژی پایگاه داده، هوش مصنوعی، یادگیری ماشین، شبکه های عصبی، آمار، شناسایی الگو، سیستم های مبتنی بر دانش، حصول دانش،  بازیابی اطلاعات، محاسبات سرعت بالا و بازنمایی بصری داده . داده کاوی در اواخر دهه 1980 پدیدار گشته است . در دهه 1990 گامهای بلندی در این شاخه از علم برداشته شده و انتظار می رود در این قرن به رشد و پیشرفت خود ادامه دهد [1]. واژه های «داده کاوی» و «کشف دانش در پایگاه داده» اغلب به صورت مترادف یکدیگر مورد استفاده قرار می گیرند . کشف دانش به عنوان یک فرآیند در شکل زیر نشان داده شده است . کشف دانش در پایگاه داده فرایند شناسایی درست، ساد ه، مفید  و نهایتا الگوها و مدلهای قابل فهم در داده ها می باشد . داده کاوی ، مرحله ای از فرایند کشف دانش می باشد و شامل الگوریتمهای مخصوص داده کاوی است، بطوریکه تحت محدودیتهای مؤثر محاسباتی قابل قبول، الگوها و یا مدلها را در داده کشف می کند . به بیان ساده تر، داده کاوی به فرایند استخراج دانش ناشناخته، درست و بالقوه مفید از داده اطلاق می شود . تعریف دیگر اینست که داده کاوی گونه ای از تکنیکها برای شناسایی اطلاعات و یا دانش تصمیم گیری از قطعات داده می باشد به نحوی که با استخراج آنها در حوزه های تصمیم گیری، پیش بینی، پیشگویی و تخمین، مورد استفاده قرار گیرند . داده ها اغلب حجیم اما بدون ارزش می باشند، داده به تنهایی قابل استفاده نیست بلکه دانش نهفته در داده ها قابل استفاده می باشد . به این دلیل اغلب به داده کاوی، تحلیل داده ای ثانویه گفته می شود .

 

فهرست مطالب:

فصل اول : داده کاوی Data Mining

1-1 مقدمه

1-2 تعاریف داده کاوی

1-3 تفاوت داده کاوی و آنالیز آماری

1-4 روش آنالیز آماری

1-5 روش داده کاوی

1-6 فواید و نقش داده کاوی در فعالیت شرکتها

1-7 مراحل اصلی داده کاوی

1-8 چه چیزی سبب پیدایش داده کاوی شده است ؟

1-9 مراحل کشف دانش

1-10 جایگاه داده کاوی در میان علوم مختلف

1-11 داده کاوی چه کارهایی نمی تواند انجام دهد ؟

1-12 داده کاوی و انبار داده ها

1-13 داده کاوی و OLAP

1-14 دلایل استفاده از DW ها

1-15 روش کار

1-16 آشنایی با مفاهیم انباره های داده

1-17 OLAP چیست ؟

1-18 چه کسانی از داده ها استفاده می کنند ؟

1-19 سیستم پشتیبانی تصمیم گیری چیست ؟

1-20 سیستم اطلاعات مدیران اجرایی

1-21 مقایسه سیستم هایOLTP و DSS

1-22 انبار داده ها

1-23 عناصر انبار داده

1-24 غرفه های داده ( سلسله مراتب انباره ها )

1-25 ابزار های گزارش گیری

1-25-1OLAP و اطلاعات چند بعدی

1-25-2OLAP رومیزی

1-25-3MOLAP چند بعدی

1-25-4 OLAP رابطه ای

1-25-5 HOLAP)hybrid OLAP )

1-25-6 استاندارد های OLAP

1-27 کاربرد یادگیری ماشین و آمار در داده کاوی

1-28 توصیف داده ها در داده کاوی

1-29 خوشه بندی

1-30 تحلیل لینک

1-31 مدل پیشبینی داده ها

1-31-1Classification

1-31-2Regression

1-31-3Time series

1-32 مدل ها و الگوریتم های داده کاوی

1-33 شبکه های عصبی

1-34 Decision trees

1-35Multivariate Adaptive Regression Splines (MARS)

1-36Rule induction

1-37K-nearest neibour and memory-based neighbor (K-NN)

1-38 رگرسیون منطقی

1-39 تحلیل تفکیکی

1-40 مدل افزودنی کلی (GAM)

1-41Boosting

1-42 سلسله مراتب انتخابها

1-43 نتیجه گیری

فصل دوم : وب کاوی Web Mining

2-1مقدمه

2-2 Web Mining

2-3رده بندی web mining

2-4Web Usage Mining

2-5Web Structure Mining

2-6 انجام عمل پیش پردازش روی فایلهای log

2-7 انجام عمل پیش پردازش preprocessing

2-8 پاکسازی داده ها data cleaning))

2-9 تشخیص کاربران user identification) )

2-10Session identification

2-11 تشخیص الگوها

2-12 تکنیکهای آماری

2-13 قوانین ارتباطی

2-14 الگوهای ترتیبی

2-15 خوشه بندی

2-16 نتیجه گیری

فصل سوم : الگوریتم های ژنتیک

3-1 مقدمه

3-2 زمینه های بیولوژیکی

3-3 فضای جستجو

3-4 مسائل NP

3-5 مفاهیم اولیه در الگوریتم ژنتیک

3-5-1 اصول پایه

3-5-2 شمای کلی الگوریتم ژنتیک

3-5-3 ساختار متداول الگوریتم ژنتیک

3-6 کد کردن

3-6-1 انواع کدینگ

3-6-2 روشهای کدینگ

3-6-3 مسائل مربوط به کدینگ

3-7 مرحله ارزیابی (evaluation)

3-8 عملگر تقاطع و جهش

3-9 رمز گشایی

3-10 کروموزوم

3-11 جمعیت

3-12 مقدار برازندگی

3-13 تعریف دیگر عملگر تقاطعی

3-14 تعریف دیگر عملگر جهش

3-15 مراحل اجرای الگوریتم ژنتیک

3-16 حل یک مسئله نمونه توسط الگوریتم ژنتیک

3-17 همگرایی الگوریتم ژنتیک

3-18 نتیجه گیری

فصل چهارم : کاربرد الگوریتم ژنتیک در Web Mining

4-1 مقدمه

4-2 یک الگوریتم ژنتیک برای جستجوی وب

4-3 دورنما

4-4 جستجو ی وب به عنوان یک مساله بهینه سازی

4-5 الگوریتم ژنتیکی بر پایه ماشین جستجو

4-6 درخواست کاربر و ارزیابی تابع

4-7 عملگر های ژنتیک و مکانیزم های جستجو

4-8 مطالعه پارامترها

4-9 الگوهای کشف شده

4-10 قوانین نتیجه گیری

4-11 رده بندی نمونه های ناشناخته

4-12 ابعاد

4-13 چرا از الگوریتم ژنتیک استفاده می کنیم ؟

4-14 یک رهیافت پیوندی -GA ها و دسته بندی کننده نزدیکترین K – همسایه

4-15 جنبه های بهبود یافته الگوریتم ها

4-16 کاوش برای قارچ خوراکی

4-17 نتیجه الگوریتم

4-18 جستجوی وب به عنوان یک مساله بهینه سازی

4-19 GA پیشنهاد شده

4-20تابع ارزیابی مطابق با درخواست استفاده کننده

4-21 عملگرهای تقاطع و دیگر ماشین های جستجو

4-22 تنظیمات آزمایش

4-23 نتیجه گیری

مراجع

 

فهرست اشکال:

فصل اول : داده کاویData Mining

شکل 1-1 : داده کاوی به عنوان یک مرحله از فرآیند کشف دانش9

شکل 1-2 : سیر تکاملی صنعت پایگاه داده

شکل 1-3 : معماری یک نمونه سیستم داده کاوی

شکل 1-4 : داده ها از انباره داده استخراج می گردند .

شکل 1-5 : داده ها از چند پایگاه داده استخراج شده اند .

شکل 1-6 : انبار داده

شکل 1-7 : شبکه عصبی با یک لایه نهان

شکل 1-8 : Wx,y

شکل 1-9 : درخت تصمیم گیری

شکل 1-10 : محدود همسایگی

فصل دوم : وب کاوی Web Mining

شکل 2-1 : نمونه ای از فرمت log file که از فرمت عمومی پیروی می کند

فصل سوم : الگوریتم های ژنتیک

شکل 3-1 : نمونه ای از فضای جواب

شکل 3-2 : کدینگ باینری

شکل 3-3 : کدینگ جهشی

شکل 3-4 : کدینگ ارزشی

شکل 3-5 : کدینگ درختی

شکل 3-6 :فضای کدینگ و فضای جواب

شکل 3-7: رابطه بین کروموزوم ها و جوابها

شکل 3-8 : انواع روابط بین فضای جواب و فضای کدینگ

شکل3-9 :مثال رمز گشایی

شکل 3-10 : مثال جهش

شکل 3-11 : نمایش یک کروموزوم n بیتی در پایه عددی m

شکل 3-12 : مثالی از عمل جابجایی تک نقطه ای

شکل 3-13 : تقاطع در کروموزوم های کد شده چهاربیتی

شکل 3-14 : تقاطعی دو نقطه ای

شکل 3-15 : عمل تقاطعی یکنواخت

شکل 3-16 : نمونه ای از عمل جهش

شکل 3-17 : مراحل اجرای الگوریتم ژنتیک

شکل 3-18 : چرخ رولت

شکل 3-19 : نمایش کروموزوم معادل زوج (X,Y)

فصل چهارم : کاربرد الگوریتم ژنتیک در Web Mining

شکل 4-1 : ارزیابی جمعیت به معنی کیفیت برای مقادیر مختلف Pmut

شکل 4-2 : تاثیر انتقال KNN

شکل 4-3 : جمعیت متوسط به معنی کیفیتی برای مقادیر مختلف 3000 مقدار اولیه

شکل 4-4 : جمعیت متوسط به معنی کیفیتی برای مقادیر مختلف 20 صفحه ابتدایی

شکل 4-5 : جمعیت متوسط به معنی کیفیتی برای مقادیر مختلف 120 صفحه ابتدایی

شکل 4-6 : جمعیت متوسط به معنی کیفیتی برای مقادیر مختلف 250 صفحه ابتدایی

شکل 4-7 : اختلاف زمانی با 250 صفحه استفاده شده اولیه

 

فهرست جداول:

فصل سوم : الگوریتم های ژنتیک

جدول 3-1 : مثالهای تقاطع تک نقطه ای

جدول 3-2 : مثالهای تقاطع دو نقطه ای

جدول 3-3 : نمونه ای از عمل جهش

جدول 3-4 :انتخاب کروموزوم ها با استفاده از مدل چرخ رولت

جدول 3-5 : نمایش جمعت اولیه

جدول 3-6 : نتایج عمل تقاطع

جدول 3-7 : نتایج عمل جهش با Pm=0.2

جدول 3-8 : کروموزوم با بیشترین مقدار برازندگی

فصل چهارم : کاربرد الگوریتم ژنتیک در Web Mining

جدول 4-1 : سوالات مورد استفاده در آزمونها

جدول 4-2 : نتایج مقایسه برای تابع f1

جدول 4-3 : نتایج مقایسه برای تابع f2

جدول 4-4 : مدلسازی مساله جستجوی اطلاعات به عنوان یک مساله بهینه سازی

جدول 4-5 : آخرین جمعیت به معنی کیفیت برا مقادیر مختلف Popmax

جدول 4-6 :پارامتر های GA برای مجموعه داده ای قارچ

جدول 4-7 : نتایج مجموعه داده ، قارچ برای دسته بندی KNN

جدول 4-8 :مقیاسی برای دیگر دسته بندی ها

جدول 4-9 :نتایج مقایسه برای Mq

 

منابع و مأخذ:

1- احسان زنجانی / مقدمه ای بر داده کاوی

2- کامیار کیمیا بیگی / مقدمه ای بر انبار داده ها (Data Warehouse). 1386

3- مستوره حسن نژاد- سیما سلطانی / متدی برای بهبود بخشیدن ساختار وب . (web usage mining)

4- یوحنا قدیمی – علی عباسی – کاوه پاشایی / کنکاو وب .(web mining)

5- رضا قنبری / آشنایی با الگوریتم ژنتیک / دانشگاه صنعتی شریف ( دانشکده ریاضی ) / 1381

6- پیام خان تیموری / الگوریتم ژنتیک و حل مساله TSP

7- F.Picarougne , N.Monmarche , A.Oliver , G.Venturini \ Web Mining With a Genetic Algorithm \ Laboratory Of Information , University Of Tours , 64.

8- F.Picarougne , N.Monmarche , A.Oliver , G.Venturini / GENIMINER Web Mining With a Genetic-Based Algorithm .

9- Robert E.Marmelstein \ Application Of Genetic Algorithm To Data Mining \ Department Of Electrical And Computer Engineering Air Force Institue Of Technology Wright-Patterson AFB .

10- M.H.Marghny And A.F.Ali \ Web Mining Based On Genetic Algorithm \ Dept. Of Computer Science , Faculty Of Computers And Information , Assuit University , Egypt , ( WWW. Icgst . com )


دانلود با لینک مستقیم


پروژه داده کاوی و کاربرد الگوریتم های ژنتیک در داده کاوی و WEB کاوی. doc

مقاله ژنتیک

اختصاصی از فایل هلپ مقاله ژنتیک دانلود با لینک مستقیم و پر سرعت .

مقاله ژنتیک


مقاله ژنتیک

دانلود مقاله ژنتیک 17 ص با فرمت WORD 

 

 

 

 

 

 

 

فهرست مطالب

ترکیب شیمایی و ساختمان اسیدهای نوکلئیک: 1
ماهیت ماده ژنتیکی 2
ساختمان DNA طبق مدل واتسون وکریک: 3
بسته بندی DNA در کرومزوم ها: 10
کروموزومهای پروکاریوتی: 11
کروموزومهای یوکاریوتی: 11
سازمانبندی کروماتین روی اسکلت متافازی: 14
منابع : 16

 


دانلود با لینک مستقیم


مقاله ژنتیک

دانلود پروژه الگوریتم ژنتیک با فرمت word

اختصاصی از فایل هلپ دانلود پروژه الگوریتم ژنتیک با فرمت word دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه الگوریتم ژنتیک با فرمت word


دانلود پروژه  الگوریتم ژنتیک با فرمت word

 

عنوان پروژه :الگوریتم ژنتیک 

نوع فایل :word

تعداد صفحات :150

 

 

چکیده

الگوریتم ژنتیک (Genetic Algorithm - GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکامل است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند.

در واقع الگوریتم‌های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگو استفاده می‌کنند. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای تصادف هستند. مختصراً گفته می‌شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسأله‌ای که باید حل شود ورودی است و راه‌حل‌ها طبق یک الگو کد گذاری می‌شوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می‌کند که اکثر آنها به صورت تصادفی انتخاب می‌شوند.

کلاً این الگوریتم‌ها از بخش های زیر تشکیل می‌شوند: تابع برازش، نمایش، انتخاب، تغییر.

کلمات کلیدی: الگوریتم ژنتیک، هیوریستیک، ترکیب و جهش، تکامل طبیعی داروین، معمای هشت وزیر.

فهرست مطالب به شرح زیر است:

  فصل اول     

 مقدمه

 به دنبال تکامل...      

 ایدۀ اصلی استفاده از الگوریتم ژنتیک 

 درباره علم ژنتیک       

 تاریخچۀ علم ژنتیک    

 تکامل طبیعی (قانون انتخاب طبیعی داروین)   

 رابطه تکامل طبیعی با روش‌های هوش مصنوعی      

 الگوریتم        

 الگوریتم‌های جستجوی ناآگاهانه       

الف- جستجوی لیست

ب- جستجوی درختی  

پ- جستجوی گراف    

 الگوریتم‌های جستجوی آگاهانه         

الف جستجوی خصمانه

 مسائل NPHard       

 هیوریستیک   

 انواع الگوریتم‌های هیوریستیک

  فصل دوم    

 مقدمه

 الگوریتم ژنتیک

 مکانیزم الگوریتم ژنتیک

 عملگرهای الگوریتم ژنتیک      

 کدگذاری       

 ارزیابی

 ترکیب

 جهش

 رمزگشایی    

 چارت الگوریتم به همراه شبه کد آن   

 شبه کد و توضیح آن  

 چارت الگوریتم ژنتیک  

 تابع هدف      

 روش‌های کد کردن     

 کدینگ باینری 

 کدینگ جایگشتی      

 کد گذاری مقدار        

 کدینگ درخت 

 نمایش رشته‌ها        

 انواع روش‌های تشکیل رشته 

 باز گرداندن رشته‌ها به مجموعه متغیرها       

 تعداد بیت‌های متناظر با هر متغیر      

 جمعیت        

 ایجادجمعیت اولیه     

 اندازه جمعیت 

 محاسبه برازندگی (تابع ارزش)

 انواع روش‌های انتخاب

 انتخاب چرخ رولت      

 انتخاب حالت پایدار     

 انتخاب نخبه گرایی    

 انتخاب رقابتی 

 انتخاب قطع سر        

 انتخاب قطعی بریندل  

 انتخاب جایگزینی نسلی اصلاح شده  

 انتخاب مسابقه        

 انتخاب مسابقه تصادفی       

 انواع روش‌های ترکیب 

 جابه‌جایی دودوئی     

 جابه‌جایی حقیقی     

 ترکیب تک‌نقطه‌ای     

 ترکیب دو نقطه‌ای     

 ترکیب n نقطه‌ای      

 ترکیب یکنواخت        

 ترکیب حسابی         

 ترتیب 

 چرخه 

 محدّب

 بخش_نگاشته

 احتمال ترکیب 

 تحلیل مکانیزم جابجایی        

 جهش

 جهش باینری  

 جهش حقیقی

 وارونه سازی بیت      

 تغییر ترتیب قرارگیری  

 وارون سازی   

 تغییر مقدار    

 محک اختتام اجرای الگوریتم ژنتیک    

 انواع الگوریتم‌های ژنتیکی      

 الگوریتم ژنتیکی سری

 الگوریتم ژنتیکی موازی

 مقایسه الگوریتم ژنتیک با سیستم‌های طبیعی         

 نقاط قوّت الگوریتم‌های ژنتیک  

 محدودیت‌های GAها  

 استراتژی برخورد با محدودیت‌ها        

 استراتژی اصلاح عملگرهای ژنتیک     

 استراتژی رَدّی

 استراتژی اصلاحی    

 استراتژی جریمه‌ای   

 بهبود الگوریتم ژنتیک  

 چند نمونه از کاربردهای الگوریتم‌های ژنتیک    

  فصل سوم   

 مقدمه

 حلّ معمای هشت وزیر         

 جمعیت آغازین

 تابع برازندگی 

 آمیزش

 جهش ژنتیکی

 الگوریتم ژنتیک و حلّ مسألۀ فروشندۀ دوره‌گرد

 حل مسأله TSP به وسیله الگوریتم ژنتیک     

 مقایسه روشهای مختلف الگوریتم و ژنتیک برای TSP  

 نتیجه گیری   

 حلّ مسأله معمای سودوکو   

 حل مسأله    

 تعیین کروموزم

 ساختن جمعیت آغازین یا نسل اول    

 ساختن تابع از ارزش  

 ترکیب نمونه‌ها و ساختن جواب جدید  

 ارزشیابی مجموعه جواب      

 ساختن نسل بعد      

 مرتب سازی به کمک GA      

 صورت مسأله 

 جمعیت آغازین

 تابع برازندگی 

 انتخاب

 ترکیب

 جهش

 فهرست منابع و مراجع

***جهت دانلود این فایل به قسمت پایین همین صفحه رفته ، پس از پرداخت مبلغ میتوانید آن را دریافت کنید ***

 


دانلود با لینک مستقیم


دانلود پروژه الگوریتم ژنتیک با فرمت word