فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله کاراموزی مکانیک خودرو

اختصاصی از فایل هلپ دانلود مقاله کاراموزی مکانیک خودرو دانلود با لینک مستقیم و پر سرعت .

 

 

 

سیستم هیل بورن :
در سال 1945 یک سیستم انژکتوری توسط یک آمریکایی به نام “ استوارت هیل بورن” برای اتومبیل فورد ساخته شد . به طوری که این سیستم فاقد هر گونه نوآوری بود . اما امتیاز آن کیفیت ساخت آن بود و در مقایسه با معروف ترین انواع کاربوراتوری آن زمان که اتسرومبورگ نام داشت به مراتب کارآیی بهتری داشت . فقط یکی از نقاط ضعف سیستم هیل بورن این بود که تمامی سوختی که از پمپ انژکتور به داخل کانال های ارتباطی پاشیده می شد به داخل موتور راه پیدا نمی کرد . فشار در داخل نازل های سیستم تزریق از طریق دو کانال ارتباطی نازک و باریک در حد متوسط تنظیم شده و مقدار اضافی بنزینی که از نازل پمپ پاشیده می شود از طریق این دو کانال به باک بنزین برگردانده می شود . در راه بازگشت میزان اضافی سوخت پاشیده شده یک دریچه کوچک قرار دارد که در هنگام به اصطلاح تخت گاز کردن بخشی از این سوخت برگردانده شده از طریق این دریچه مورد استفاده قرار گرفته تا مخلوط سوخت مورد نیاز حاصل شود . بعد از ورود طرح هیل بورن به بازار اظهار شد که چنین طرح سیستم تزریق سوختی برای استفاده در موتورهای خیابانی مناسب نیست . حقیقت این بود که این طرح به طور کلی طرحی مناسب برای اتومبیل های موتور بنزینی نبود .

سیستم روچستر :
بعد از چندی کمپانی جنرال موتورز سیستم انژکتوری روچستر را به عنوان جانشین برای کاربوراتورهای چهار دهنه خود معرفی کرد که متأسفانه این سیستم نتوانست باعث به وجود آمدن نیروی تولیدی بیشتری برای موتورها شود . اما اظهار می شود که اتومبیل با چنین سیستمی از شتاب بهتری برخوردار است . سیستم روچستر تا حدودی مشابه سیستم هیل بورن بود و در این سیستم تنظیم جریان سوخت با تغییر فشار سوخت انجام می گرفت .
متأسفانه برای روچستر و جنرال موتورز ، مشکلات سوخت رسانی در هنگام آهسته کار کردن موتور توسط مهندسین حل نگردید و نازل های اسپری کننده تا حدودی در این کار مؤثر بودند و این حقیقت را می شد از رنگ سیاهی که از اگزوز این گونه اتومبیل متصاعد می شد ، دریافت . کمپانی معظم بوش آلمان توانست تا حد زیادی مشکل قطرات سوخت را مرتفع کند با ابداع سیستم K-Jetronic مشکلات به طرز چشمگیری برطرف شد . این سیستم دارای توانایی و قابلیت بالایی بوده ولی در مقایسه با سایر سیستم های انژکتوری گران می باشد . برنامه تدارک و تنظیم میزان سوخت در سیستم K-Jetronic بسیار پیچیده می باشد .
اساس کار سیستم K-Jetronic :
این سیستم با تزریق دائم بوده و اندازه گیری سوخت در آن بطور مستقیم با جریان هوای مصرفی موتور انجام می شود . در این سیستم پمپ عامل جریان یافتن سوخت ، حجم هوای عبوری به موتور بوده و سیستم محرک مکانیکی نیست . نظر به این که هوای مصرفی موتور بطور مستقیم قابل اندازه گیری و کنترل میباشد ، طرح K-Jetronic برای کنترل گازهای خروجی اگزوز و استفاده از پس سوز نیز بسیار مناسب است . هوای مصرفی موتور پس از عبور از فیلتر هوا به صفحه اندازه گیر هوا برخورد می کند و آنرا به حرکت در می آورد . با حرکت صفحه اندازه گیر ، اهرم آن قرقره سوپاپ سوخت را حرکت داده و معبری از سوخت را متناسب با حجم هوا به موتور باز می کند . سوخت از باک توسط پمپ الکتریکی به آکومولاتور می رسد ، پس از ذخیره سازی در آن که برای نوسان گیری ضربان های سوخت ضروری است ، به فیلتر رسیده و سپس وارد قسمت توزیع کننده می شود .
یک رگلاتور اولیه در قسمت توزیع کننده فشار سوخت را در مقدار ثابتی نگه می دارد و از برگشت سوخت اضافی به باک و یا ارسال بیش از حد به موتور جلوگیری می کند .
واحد اندازه گیر هوا :

واحد اندازه گیر هوا شامل یک محفظه مخروطی است که در میان آن یک صفحه ای متصل به اهرم قرار گرفته است . تعادل وزنی صفحه واهرم را یک وزنه عهده دار است . این تعادل در حالت خاموش بودن موتور می باشد و در هنگام روشن بودن موتور به نسبت مصرف هوا ، تعادل صفحه اندازه گیر با دبی هوای مصرفی موتور بهم می خورد . البته بعداً توسط نیروی هیدرولیکی سوختی که به پلانجر کنترل سوخت تاثیر می کند ، نوعی تعادل در سیستم ایجاد می شود .در حقیقت موقعیت صفحه اندازه گیر با مقدار هوای عبوری از محفظه مخروطی تعیین می شود و حرکت آن توسط اهرم به پلانجر توزیع کننده سوخت منتقل می شود و آنرا بسمت بالا حرکت می دهد

شرح کامل سیستم K-Jetronic :
سوخت از باک توسط پمپ برقی به آکومولاتور می رسد و ضربان آن در این قسمت جذب می شود سپس به فیلتر رسیده و ناخالصی از سوخت جدا می شود .
سوخت وارد شده به سیلندر اندازه گیری کننده یا خارج شده از آن به کناره های مخالف صفحه نازک فولادی دیافراگمی منتقل می شود و این صفحه هنگامی که فشار پمپ بیش از فشار طرف بیرونی صفحه باشد ، راه های انتقال سوخت را به انژکتورهای میخی شکل مسدود می کند . هنگامی که بنزین وارده به سیلندر اندازه گیری کننده در وضعیتی باشد که فشار در هر دو طرف صفحه دیافراگمی یکسان با شد ، خطوط ارتباطی مفتوح شده و بنزین یا هر سوخت دیگر با فشار پمپ انژکتورها هدایت می شود البته با باز شدن خطوط ارتباطی به انژکتورها ، فشار طرف بیرونی صفحه دیافراگمی افت پیدا کرده و بلافاصله باعث بسته شدن این خطوط می شود تا زمانی که دوباره فشار در دو طرف یکسان شود .
هدف تمامی این مجموعه ایجاد یک جریان سوخت مداوم و در عین حال متغیر با وجود یک فشار سوخت کمتر از فشار دیافراگم بود . سوخت به طرف بالای آن رانده می شد و سیستم K-Jetronic کار می کرد . نحوه انتقال سوخت به طرف انژکتور به صورت امواج و دایره های بسته ای صورت گرفته و فرکانس این مربع با افزایش هوای ورودی به داخل موتور افزایش پیدا می کرد .
قسمت کنترل سوخت ارسالی به انژکتورها :
بین فیلتر هوا و دریچه گاز موتور واحد کنترل سوخت ارسالی قرار دارد . این قسمت شامل یک سنسور و کنترل دبی هوا و یک تقسیم کننده سوخت بین لوله های انژکتور ها ست . سنسور دبی سنج هوا ، در مقابل حجم هوای ورودی تغییر موضع داده وروی سوخت ارسالی تاثیر می گذارد ورود ، هوا مصرفی موتور از دهانه مخروطی شکل ، باعث حرکت صفحه حساس سنسور شده و در نتیجه اهرم متصل به صفحه اندازه گیر به بالا حرکت کرده و پلانجر کنترل سوخت نیز به سمت بالا هدایت می شود . با بالا رفتن پلانجر شیار خروجی آزادشده و سوخت بیشتری به انژکتور ها فرستاده می شود . هر چه هوای مصرفی موتور افزایش یابد ، پلانجر حرکت بیشتری به سمت بالا داشته و در نتیجه ارسال سوخت از شیار پلانجر به انژکتور ها زیادتر خواهد بود . وقتی موتور خاموش است ، صفحه اندازه گیر و پلانجر توسط وزنه تعادل و فنر برگردان در پایین ترین وضعیت قرار دارد . در این حالت سوخت ارسالی به انژکتور ها به صفر می رسد . هرگاه موتور حالت پس زدن شعله داشته و فشار مانیفولد گاز بالا رود ، صفحه اندازه گیر به سمت پائین حرکت کرده و دریچه را بزرگتر می کند تا تاثیر فشار منفی سیستم را معیوب نسازد .
نحوه توزیع سوخت :
سوخت بطور یکنواخت برای هر سیلندر توسط شیار سوپاپ قرقره ای ارسال می شود . در بارل اندازه گیر که پلانجر حرکت می کند ، یک مجرای چهار گوش برای هر سیلندر پیش بینی شده که حرکت پلانجر در بارل ، تعدادی از این مجاری برای سیلندرها باز شده و سوخت از آنها به لوله های انژکتور ارسال می شود . در ابتدای لوله ورودی هر سیلندر ، در واحد اندازه گیر یک سوپاپ کنترل فشار وجود دارد که وظیفه اش ثابت نگهداشتن سوخت در لوله های انژکتور است .
انژکتورها :

انژکتورها بطور خودکار با فشار ثابت 3.6 bar باز شده و سوخت را به موتور تزریق می کند ، انژکتورها در سیستم K-Jetronic فقط تزریق سوخت را بعهده دارد ، نه اندازه گیری آنرا ، سوخت وارد شده در داخل انژکتور سوپاپ فشار آنرا باز کرده و ضمن ایجاد ارتعاش با فرکانس 1500 HZ کنترل دقیق در باز و بستن سوزن به وجود می آورد .
اجزاء تشکیل دهنده سیستم K-Jetronic :

1 . باک
2 . پمپ بنزین برقی
3 . آکومولاتور
4 . فیلتر سوخت
5 . واحد کنترل کننده مخلوط سوخت
5.1 . صفحه حساس در مسیر هوا
5.2 . سوپاپ فشار
5.3 . مدار اولیه فشار سنج
6 . انژکتور
7 . سوپاپ حالت استارت
8 . وسیله ارسال هوای اضافی دور آرام
9 . کلید تایمر گرمایی
10. کنترل کننده حرارتی
سیستم سوخت رسانی KE – Jetronic :
این سیستم نسبت به سیستم K – Jetronic گران بوده ولی دارای انعطاف بیشتری است . و تجهیزات اضافی آن عبارتند از :
1 . حسگر تعیین کننده مقدار هوا مصرفی موتور
2 . سوپاپ کنترل فشار که مقدار سوخت ارسالی را تحت کنترل دارد
3 . رگلاتور تنظیم فشار که فشار مدار اولیه را ثابت نگاه می دارد و نیز در هنگام خاموش کردن موتور سوخت را کاملاً قطع می کند .
اجزاء سیستم KE– Jetronic در شکل زیر نشان داده شده است :

1 . پمپ برقی
2 . آکومولاتور سوخت
3 . فیلتر سوخت
4 . رگلاتور فشار سوخت
5 . انژکتور
6 . سوپاپ سوخت رسانی استارت
7 . توزیع کننده سوخت
8 . اندازه گیر جریان هوا
9 . کلید ترمو تایم
10 . سوپاپ هوای اضافی
11 . سنسور گرمایی موتور
12 . سوئیچ دریچه گاز
13 . سنسور لامبدا
14 . واحد کنترل مرکزی ECU
طرز کار :
در این سیستم سوخت پس از فیلتر شدن به دو قسمت تقسیم می شود ، یک قسمت به رگلاتور و قسمتی دیگر وارد تقسیم کننده می شود . خروجی رگلاتور تنظیم فشار روی پلانجر کنترل سوخت تاثیر گذارده و حرکت آنرا کنترل می کند . در حالیکه در سیستم K – Jetronic عمل کنترل سوخت بعهده یک صفحه دیافراگمی است . سوخت خارج شده از رگلاتور از یکطرف به پلانجر و از طرف دیگر به سوپاپ کنترل فشار الکتروهیدرولیکی تاثیر می کند این سوپاپ از نوع الکترومگنتی است و موازی با مدار محفظه پلانجر قرار گرفته است .
سوپاپ استارت سرد Bosch در سیستم K و KE – Jetronic :

سوپاپ استارت سرد یک سوپاپ با عمل کننده مغناطیسی است . و به دمای موتور وابسته است . و مقداری سوخت اضافی برای یک دوره محدود به درون محفظه پیش بینی شده تزریق می کند .
اجزاء :
1 . اتصال الکتریکی
2 . سوخت اعمال شده با صافی
3 . سوپاپ ( آرمیچر الکترومغناطیسی )
4 . سیم پیچ
5 . نازل چرخشی
6 . نشیمنگاه سوپاپ

سیستم سوخت رسانی L-Jetronic
اساس کار :
هوای ورودی به موتور از اندازه گیر هوا یا دبی سنج عبور کرده و با انحراف دریچه آن ، علائم الکتریکی مناسبی به واحد کنترل ارسال میدارد . دریچه گاز نیز دارای سنسور تعیین وضعیت بوده که مقدار باز بودن آن به واحد کنترل گزارش می شود . انژکتورها مگنتی هستند و در صورت فعال بودن انژکتور ، سوخت متناسبی را بداخل مانیفولد هوا روی دریچه گاز تخلیه می کنند . انژکتورها نسبت بهم موازی قرار داشته و دارای فشار ثابتی هستند . که بین 2.5 تا 3.5 آتمسفر می باشد مقدار سوخت تزریق شده به زمان باز بودن انژکتور ها بستگی دارد . در هر انژکتور یک رگلاتور کنترل فشار بکار رفته است که از نوع دیافراگمی فنردار بوده و وظیفه دارد فشار تزریق در انژکتور ها را ثابت نگهدارد .
دستگاه اندازه گیر هوا :

جریان هوای ورودی موتور از اندازه گیر هوا عبور می کند ، با عبور هوا صفحه اندازه گیر منحرف شد ه و فنر برگشت دهنده آن متراکم می شود . انحراف این صفحه در پتانسیومتر حرکت به وجود آورده و تغییرولتاژی در مدار آن تولید می شود این تغییر ولتاژ طول زمانی پالس های الکتریکی در واحد کنترل را تغییر می دهد . سنسور حرارت سنج هوا نیز وجود دارد که تغییرات وزن مخصوص هوا با تغییرات دما را مشخص می کند .
در ضمن در این سیستم از کلید الکتریکی دریچه گاز استفاده شده که دو وضعیت را مشخص می کند یکی مربوط به بسته بودن دریچه دردور آرام ودیگری مربوط به حالت تمام بار ، در هر دو وضعیت علائمی به واحد کنترل ارسال شده وروی زمان باز بودن انژکتورها تاثیر می گذارد . همچنین با توجه به سنسور حرارت سنج موتور ، متناسب با گرم شدن موتور ، زمان باز بودن انژکتورها کمتر می شود .
اجزاء سیستم L– Jetronic در شکل زیر نشان داده شده است :

1 . پمپ سوخت الکتریکی
2 . فیلتر سوخت
3 . تنظیم کننده فشار سوخت
4 . انژکتور
5 . سنسور جریان هوا
6 . سوئیچ گرمایی
7 . تنظیم کننده هوای کمکی
8 . سوئیچ سوپاپ دریچه گاز
9 . سنسور لامبدا ( Lambda )
10 . ECU
طریقه پاشش انژکتورها در سیستم L– Jetronic :
دلکو در این سیستم دارای دو دست پلاتین میباشد ، یک دست پلاتین مانند دلکو های معمولی مربوط به قطع و وصل مدار اولیه و دست دوّم مربوط به علامت دادن به دستگاه الکترونیکی میباشد . هرگاه این پلاتین ها جریان الکتریکی در مدار تولید کنند . دستگاه کنترل مرکزی نصف انژکتورهای موتور را فعال می کند .
حسگر فشار سنج هوا :
در این حسگر از دو کپسول توخالی روی محور آن وجود دارد که داخل کپسولها خلا نسبی وجود دارد . در فشار زیاد محیط سطوح خارجی کپسولها مقعر و در فشار کم محیط سطوح خارجی آنها محدب می شود . حرکت ناشی از انبساط و انقباض کپسولها میله میانی را حرکت داده و در سیم پیچ آن ولتاژی القاء می شود تغییر حوزه و ایجاد ولتاژ در آن علامتی به دستگاه کنترل کننده الکتریکی ارسال می کند
سیستم LH – Jetronic :

تفاوت اساسی این سیستم با سیستم L-Jetronicدر روش اندازه گیری هوای ورودی به موتور ونوع دبی سنجی آن است . در سیستم LH-Jetronic از یک سیم داغ الکتریکی برای اندازه گیری دبی هوا مصرفی موتور استفاده شده است . در این سیستم یک واحد کنترل دیجیتالی وجود دارد که نسبت سوخت به هوا را با توجه به بار و دور موتور تغییر می دهد و بهترین نسبت سوخت ویژه را با توجه به علائمی که از اگزوز دریافت می کند تهیه می نماید . واحد کنترل الکترنیکی با دریافت علائم از سنسور های مختلف ، زمان باز بودن انژکتورها را با توجه به شرایط موجود تنظیم می کند . در واحد کنترل یک میکرو کامپیوتر بکار رفته که شامل حافظه برنامه ریزی شده بوده و مقادیر مختلف را ضبط می کند
اجزاء سیستم LH-Jetronicدر شکل زیر نشان داده شده است :
1 . پمپ الکتریکی
2 . فیلتر سوخت
3 . رگلاتور تنظیم فشار سوخت
4 . لوله های توزیع سوخت مشترک
5 . سیستم سیم داغ الکتریکی
6 . سنسور حرارت سنج موتور
7 . سوپاپ هوای اضافی دور آرام
8 . کلید رئوستای دریچه گاز
9 . سنسور لامبدا
10 . ECU
دستگاه اندازه گیر دبی هوا :
این دستگاه از یک سیم حرارتی داغ تشکیل شده که هوای مصرفی موتور از اطراف آن عبور داده می شود جریان لازم برای ثابت نگهداشتن درجه حرارت این سیم داغ به حجم هوای عبور کرده از اطراف آن بستگی دارد جریان الکتریکی برای گرم نگهداشتن سیم داغ که با هوای ورودی تغییر می کند ، تغییر ولتاژ در مقاومت آن به وجود می آورد . به علاوه دور موتور با حجم هوای مصرفی ارتباط داشته و علامتی هم از دور سنج ارسال می شود .
دبی سنج :
در این سیستم دبی سنج از خاصیت گردابی هوا پیچشی استفاده کرده و امواج صوتی مافوق صوت ارسال می دارد . مقدار فرکانس ایجاد شده به مقدار هوای عبور کرده بستگی دارد . فرکانس از یک امیتر پخش شده و در یک جذب کننده دریافت شده و تبدیل به پالس الکتریکی شده وبه واحد کنترل ارسال می شود .
سیستم Mono - Jetronic :
در این سیستم یک انژکتور وجود دارد که سوخت مورد نیاز هر چهار سیلندر موتور را متناوباً در مانیفولد هوا تزریق می کند به این سیستم تزریق یک نقطه ای Injection = SPI ) Single – Point ) یا تزریق مرکزی ( Central – Fule – Injection = CFI ) ویا تزریق در دریچه گاز گویند ( Throttle Body Injection = TBI )
واحد انژکتور:
در این سیستم انژکتور درست در بالای دریچه گاز نصب می شود و به این ترتیب سوخت یکنواختی در مدار تخلیه می کند . دستور تزریق سوخت الکترونیکی بوده و فرمان آن از واحد کنترل و سیستم جرقه تامین می شود .
اجزاء سیستم Mono - Jetronic در شکل زیر نشان داده شده است :
1 . پمپ سوخت الکتریکی
2 . فیلتر سوخت
3a . پتانسیومتر سوپاپ دریچه گاز
3b . تنظیم کننده فشار
3c . انژکتور
3d . کابل اتصال با محفظه دمای هوا
3e . محرک سوپاپ دریچه گاز در هنگام درجا کار کردن
4 . سنسور دمای موتور
5 . سنسور لامبدا ( Lambda )
6 . ECU
نتیجه گیری :
سیستم های سوخت رسانی انژکتوری بنزینی انواع مختلف دارند که در این مقاله سعی شده که اولاً یک تاریخچه از نحوه به وجود آمدن و مراحل توسعه این سیستم ها شرح داده شود . و ثانیاً مختصری از هر سیستم شامل شکل ، اجزاء تشکیل دهنده آن و فرق سیستم های موجود با هم توضیح داده شود .

 

 

 

 

 

 

 

فصل سوم

پردازنده های سوخت چگونه کار می کنند؟
اگر مقاله مربوط به سلولهای سوختی (fuel cells) را خوانده باشید، می دانید که این سلولها از هیدروژن و اکسیژن الکتریسیته تولید و تنها بخار آب ساتع می کنند. مشکل اصلی سلولهای سوختی هیدروژنی ، ذخیره و توزیع هیدروژن است. برای اطلاعات بیشتر قسمت " how the hydrogen economy works" را ملاحظه بفرمایید.
هیدروژن، گازی با دانسیته انرژی زیاد نیست؛ یعنی در مقایسه با یک سوخت مایع مثل بنزین یا متانول انرژی کمی در واحد حجم دارد. لذا قرار دادن مقدار کافی هیدروژن در سلول سوختی یک ماشین هیدروژنی به منظور طی مسافتی معقول و منطقی دشوار به نظر می رسد. هیدروژن مایع، دانسیته انرژی خوبی دارد ، اما باید در دمای بسیار پایین و فشار زیاد نگهداری و ذخیره شود که نگهداری و حمل آن را مشکل می سازد.
سوختهای رایج و معمولی مثل گاز طبیعی ، پروپان ، بنزین وسوختهای غیر رایج مانند متانول و اتانول ، همه در ساختار مولکولیشان هیدروژن دارند. اگر یک فناوری وجود داشت که هیدروژن را از این سوختها جدا و از آن برای سوخت رسانی به سلول سوختی استفاده می کرد می توان گفت مشکل ذخیره و توزیع هیدروژن به کلی برطرف می شد.این فنا وری در حال توسعه پردازنده سوخت یا مبدل (Reformer ) نام دارد. در این قسمت می آموزیم که مبدل گازی (Steam Reformer ) چگونه کار می کند.
هدف پردازنده های سوخت
وظیفه پردازنده های سوخت، تأمین هیدروژن خالص وابسته برای سلول سوختی ، با استفاده از یک سوخت است که آماده و دردسترس بوده و براحتی قابل حمل است. پردازنده های سوخت باید قادر باشند که این عمل را به روش بهینه و کارآمد با کمترین آلودگی انجام دهند؛ در غیر این صورت آنها مزایای استفاده از سلول سوختی را از بین می برند.
برای اتومبیلها، مسأله اصلی ذخیره انرژی است.. برای اجتناب از مخزنهای سنگین و فشرده ، یک سوخت مایع به گاز ارجحیت دارد. شرکتهای مختلف روی پردازنده هایی برای سوختهای مایع مانند بنزین و متانول کار می کنند. بهترین سوختی که در کوتاه مدت توصیه می شود متانول است. در حال حاضر این سوخت بسیار شبیه بنزین، ذخیره و توزیع می شود.
برای خانه ها و ایستگاههای تولید برق، سوختهایی چون گاز طبیعی و پروپان مناسبترند. بسیاری از خانه ها و ایستگاههای تولید برق قبلاً به منابع گاز طبیعی، لوله کشی و متصل شده اند. بعضی خانه ها نیز که لوله کشی نشده اند ، مخزن پروپان دارند.
بنابراین معقول به نظر می رسد که این سوختها را به هیدروژن تبدیل کرده تا در سلولهای سوختی ساکن استفاده شوند.
متانول و گاز طبیعی هردو می توانند در یک مبدل گازی (steam reformer) به هیدروژن تبدیل شوند.ن فناوری در حال توسعه، پردازنده سوخت یا مبدل (reformer) نام دارد. در این قسمت می آموزیم که مبدل گازی (steam reformer) چگونه کار می کند.
مبدل گازی (steam reformer)
دو نوع مبدل گازی وجود دارد؛ یکی متانول و دیگری گاز طبیعی را بازسازی می کند.
بازسازی متانول
فرمول مولکولی متانول CH3OH است. هدف مبدل این است که حداکثر هیدروژن (H) ممکن را از این مولکول جدا کند طوری که میزان نشر آلاینده هایی چون کربن مونواکسید را به حداقل برساند.این فرآیند با تبخیر متانول مایع و آب آغاز می گردد. گرمایی که در فرآیند بازسازی تولید شده بود، برای این منظور (تبخیر) استفاده می شود. ترکیب بخار آب و متانول (متانول گازی) از یک اتاقک داغ حاوی کاتالیزگر عبور داده می شود.
هنگامی که مولکول های متانول به کاتالیزگر برخورد می کنند به مونواکسید کربن (CO) و گاز هیدروژن (H2) تجزیه می شوند:
CH3OH => CO + 2H2
بخار آب نیز به گاز هیدروژن و اکیسژن تجزیه می شود. این اکسیژن با CO ترکیب می شود تا CO2 بسازد. با این روش، مقدار بسیار کمی CO آزاد می شود چرا که بیشتر آن به CO2 تبدیل شده است:
H2O + CO => CO2 + H2
بازسازی گاز طبیعی
گاز طبیعی که بیشترین ماده ترکیبی آن متان(CH4) است ، با عملکردی مشابه پردازش می گردد. متان موجود در گاز طبیعی با بخار آب واکنش داده و گازهای مونواکسید کربن وهیدروژن، آزاد می‌کند:
CH4 + H2O => CO + 3H2
همانند عملی که در بازسازی متانول انجام شد، بخار آب به گاز هیدروژن و اکسیژن تجزیه می شود. اکسیژن با CO ترکیب شده و CO2 حاصل می گردد:
H2O + CO => CO2 + H2
هیچ کدام از این ترکیبها ایده آل نیستند؛ مقداری از متانول یا گاز طبیعی و مونواکسید کربن بدون اینکه واکنش دهند باقی می مانند. این مواد در مجاورت یک کاتالیزگر با مقدار کمی هوا(برای تأمین اکسیژن) سوزانده می شوند. این عمل، بسیاری از ملکولهای CO باقی مانده را به CO2 تبدیل می کند.
بسیاری روشهای دیگر ممکن است استفاده شود تا آلاینده های دیگری همچون گوگرد که ممکن است در گاز اگزوز باشند را پاک کنند.
به دو دلیل حذف کردن مونواکسید کربن از گاز اگزوز اهمیت دارد: اول اینکه اگر CO از سلول سوختی عبور کند ، کیفیت عملکرد و طول عمر سلول سوختی کاهش می یابد . دوم اینکه این گاز یک آلاینده کنترل شده است که بسیاری از ماشینها مجازند تنها مقدار بسیار کمی از آن را تولید کنند.
پردازنده سوخت و سلول سوختی
برای تولید برق، سیستم های مختلفی باید با هم کار کنند تا جریان الکتریکی خروجی را تأمین نمایند. یک سیستم معمولی از یک مصرف کننده الکتریکی (مثل اتاق خودرو یا موتور الکتریکی) یک سلول سوختی و یک پردازنده سوخت تشکیل شده است.
خودرویی که با سلول سوختی کار می کند را بررسی می کنیم. وقتی که شما پدال گاز(هیدروژن) را فشار می دهید، فعل و انفعالاتی به طور همزمان رخ می دهند.
● کنترل کننده موتور الکتریکی شروع به برقراری جریان در موتور الکتریکی کرده و موتور الکتریکی نیز گشتاور بیشتری ایجاد می کند
● در سلول سوختی، هیدروژن بیشتری واکنش می دهد، الکترونهای بیشتری تولید شده، در موتور و کنترل کننده الکتریکی جریان می یابند و نیاز بیشتر به انرژی را برطرف می کنند.
● پردازنده سوخت، متانول بیشتری را درون سیستم - که هیدروژن تولید می کند- پمپ می کند. پمپ دیگری جریان هیدروژنی را که به سلول سوختی می رود افزایش می دهد.
فعل و انفعالات متوالی مشابه ای نیز هنگامی که دراتاق، مصرف انرژی بالا می رود رخ می دهد. مثلاً وقتی سیستم تهویه روشن می شود برق خروجی سلول سوختی باید سریعاً افزایش یابد وگرنه چراغها کم نور می شوند تا اینکه سلول سوختی نیاز انرژی را تأمین کرده و افت ولتاژ را جبران نماید.
جنبه های منفی پردازنده های سوخت
پردازنده های سوخت زیانهایی نیز دارند. زیانهایی همچون آلودگی و تأثیر روی بازده کلی.
آلودگی
اگرچه پردازنده های سوختی می توانند گاز هیدروژن را برای سلول سوختی با آلودگی بسیار کمتر از یک موتور درون سوز تأمین نمایند، مقدار قابل توجهی دی اکسید کربن (CO2) تولید می کنند. اگرچه این گاز یک آلاینده کنترل شده نیست، گمان می رود که در گرم شدن زمین (global warming) نقش داشته باشد.
اگر در یک سلول سوختی هیدروژن خالص استفاده شود ، تنها محصول فرعی آن ، آب (بخار آب) است. CO2 یا هیچ گاز دیگری تولید نمی شود. اما چون خودرو هایی با پردازنده های سوخت از سلول سوختی انرژی می گیرند، مقدار کمی از آلاینده های کنترل شده (مثل مونواکسید کربن) را تولید می کنند، نمی توان نام وسایل نقلیه پاک و غیر آلاینده (ZEVs : zero emission vehicles) را با با توجه به قوانین آلودگی کالیفرنیا بر آنها نهاد. هم اکنون فناوری های اصلی که تحت عنوان ZEV ها شناخته می شوند ، خودرو های الکتریکی با باتری و خودرو های هیدروژنی هستند.
به جای تلاش در جهت بهبود پردازنده های سوخت برای حذف آلاینده های کنترل شده از آنها، برخی شرکتها روی شیوه های جدیدی برای ذخیره یا تولید هیدروژن در وسیله نقلیه کار می کنند. Ovonic روی مخزنی از جنس هیدرید فلزی کار می کند تا هیدروژن را مثل اسفنجی که آب را جذب می کند، جذب کند. با این وسیله نیازی به مخزنهای پرفشار نیست و می توان ظرفیت هیدروژن وسیله نقلیه را افزایش داد.
Powerball Technologies درنظر دارد از گلوله های پلاستیکی کوچکی که مملو ازسدیم هیدرید می باشند استفاده کند. این توپها وقتی باز شده و به داخل آب انداخته شوند هیدروژن تولید می کنند. محصول فرعی این واکنش سدیم هیدرواکسید مایع بوده که یک ماده شیمیایی صنعتی رایج است.
بازده
زیان دیگر پردازنده های سوخت این است که بازده کلی ماشینی که با سلول سوختی کار می کند را کاهش می دهند. پردازنده سوختی ازگرما وفشاربرای کمک به انجام واکنشهایی که هیدروژن آزاد می کنند استفاده می کند.
بسته به نوع سوختی که به کار می رود و بازده سلول سوختی و پردازنده سوخت، بهبود بازده روی خودرو های بنزینی معمولی به طور آشکار کم است. این مقایسه بازده های ماشین بنزینی و ماشین با سلول سوختی و ماشین برقی را ملاحظه بفرمایید.

 

 

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   45 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله کاراموزی مکانیک خودرو

گزارش کاراموزی و پروژه شرکت شهدآب آذربایجان

اختصاصی از فایل هلپ گزارش کاراموزی و پروژه شرکت شهدآب آذربایجان دانلود با لینک مستقیم و پر سرعت .

گزارش کاراموزی و پروژه شرکت شهدآب آذربایجان ، فرمت ورد 40 صفحه

برای رشته صنایع غذایی

 

تاریخچه فعالیت و نوع شرکت:

شرکت شهدآب (سهامی عام) در تاریخ 12/6/71 به صورت شرکت سهامی خاص تاسیس شده و طی شماره 1075 مورخه 29/2/63 در اداره ثبت شرکت ها و مالکیت صنعتی ارومیه به ثبت رسیده است. شرکت در تاریخ 2/2/77 به شرکت سهامی عام تبدیل و در تاریخ 17/9/77 در بورس اوراق بهادار تهران پذیرفته شده است در حال حاضر شرکت شهدآب جزو واحدهای تجاری فرعی شرکت خاصی نیست و واحد تجاری اصلی نهایی گروه شرکت سرمایه گذاری غدیر امور شرکتهای بانک کشاورزی و کارگذاری ایین است مرکز اصلی شرکت در ارومیه می باشد.

فعالیت اصلی شرکت:

موضوع فعالیت شرکت طبق اساسنامه به موجب پروانه بهره برداری شماره 107571 مورخه 15/8/73 که توسط اداره کل صنایع استان صادر شده بهره برداری از کارخانه با ظرفیت 2000 تن در تاریخ مذکور آغاز شده است و از مورخه 23/6/79 پروانه بهره برداری اصلاح شده که 9000 تن آبمیوه نیز به پروانه مورد نظر اضافه گردیده است و از اوایل سال 81 ظرفیت تولید به 5000 تن کنسانتره و 9000 تن آبمیوه و 100 تن پوره انواع میوه اصلاح شده است.

نوع محصول یا خدمات:

الف) تولید انواع کنسانتره آبمیوه به ظرفیت 10 تن آبمیوه در ساعت

ب) تولید انواع آبمیوه در پاکتیهای دودی پک 200 سی سی به ظرفیت 5400 پاکت در ساعت

ج) تولید انواع آبمیوه در پاکتهای تتراپک 200 سی سی به ظرفیت 4300 پاکت در ساعت

د) تولید انواع آبمیوه در پاکتهای تتراپک یک لیتری به ظرفیت 4200 پاکت در ساعت

توضیحات کلی راجع به خطوط تولید و گلوگاه های تولید

تولید انواع کنسانتره (سیب)

تولید کنسانتره آب انگور:

 

فهرست :

مقدمه

تاریخچه فعالیت و نوع شرکت

فعالیت اصلی شرکت

موضوع فعالیت شرکت

مرکز اصلی شرکت

نوع محصول یا خدمات

توضیحات کلی راجع به خطوط تولید و گلوگاههای تولید (تولید انواع کنسانتره سیب)

تولید کنسانتره آب انگور

مواد اولیه مصرفی

فلوچارت تولید انواع آب میوه

کروکی

آدرس شرکت و سایت

سرمایه شرکت

سهامداران شرکت

فرمهای قرارداد کار

وامهای تامین منابع مالی

تشریح فعالیت های مالی اداری و تشکیلات

الف) میانگین آمار پرسنل یا نیروی انسانی دائم و قراردادی به تفکیک واحدهای تولیدی و خدماتی و اداری:

ب) میزان تحصیلات پرسنل دائم و قراردادی به شرح زیر می باشد: (جنسیت)

ظرفیت شرکت

نمودار تولید انواع آبمیوه 200 سی سی

روشهای بازاریابی

ساعات کار پرسنل شرکت

تسهیلات رفاهی کارکنان

نحوه جذب و آمار استخدام، انفصال، بازنشستگی کارکنان دائم شرکت به تفکیک ماه ها:

حقوق و مزایا

عمده ترین فعالیت های واحد فنی

عمده ترین فعالیت های واحد تولیدی

عمده ترین فعالیت های واحد مالی اداری و بازرگانی

استهلاک دارائی های ثابت

تسعیر ارز

نحوه شناسایی درآمد حاصل از فروش محصولات صادراتی

ذخیره مزایای پایان خدمت کارکنان:

نتیجه گیری و پیشنهاد

انتقاد و پیشنهاد

 

 

توجه : موارد زیر نیز در سایت وجود دارند

گزارش کاراموزی و پروژه شرکت شهدآب آذربایجان فرمت ورد 40 صفحه

پروژه و کاراموزی کارخانه شهد آب ارومیه برای صنایع غذایی ، با فرمت ورد ، 37 صفحه

گزارش کاراموزی شرکت شهد ایران ( تولید کننده آبمیوه و کنستانتره ) برای صنایع غذایی ، با فرمت ورد 39 صفحه


دانلود با لینک مستقیم


گزارش کاراموزی و پروژه شرکت شهدآب آذربایجان

گزارش کاراموزی کارخانه آبمیوه

اختصاصی از فایل هلپ گزارش کاراموزی کارخانه آبمیوه دانلود با لینک مستقیم و پر سرعت .

گزارش کاراموزی شرکت شهد ایران ( تولید کننده آبمیوه و کنستانتره ) برای صنایع غذایی ، با فرمت ورد 39 صفحه

دارای فهرست و فونت B Zar

 

خلاصه ای از تاریخچه شرکت شهد ایران ( تولید کننده آبمیوه و کنستانتره ) در خلال سالهای 60 و 61 عنوان شد که محصول سیب درختی کشور سالیانه 1200000 تا 1500000 تن می باشد که مقدار زیادی از این محصول ،          پای درخت ها فاسد می شود و از بین می رود بدین منظور محصولان شرکت بر فکر افتادن از سیبی که در حقیقت ضایع می شود و از سیبی که پس از مصرف تازه خوری و پس از تکمیل ظرفیت ضایع نگهداری باقی می مانند و محکوم بر فناست با احداث کارخانه کنسانتره و آبمیوه ، مقداری از این محصول را برای مصارف داخلی تبدیل به آبمیوه و مقداری هم به صورت کنستانتره و آبمیوه تغلیظ درآورده و به کشور های دیگر صادر نمایند تا بدین وسیله ضمن جلوگیری از ضایعات فراوان که در حقیقت ثروت ملی است - ارزش قابل توجه ای نیز نصیب کشور شود . در ضمن زمینه اشتغال به تحصیل عده ای از هموطنان فراهم گردد . به همین منظور در سال 61 عملیات ساختمانی آغاز شد در سال 64 پس از اتمام ساختمان و ساخت و نسب ماشین آلات و تاسیسات ، با ظرفیت تولید سالانه 1500 تن کنستانتره و 3000 تن آبمیوه شرع به کار نمود و در سال 66 پروانه بهره برداری از اداره صنایع دریافت نمود .

محصولات تولید کارخانه :

محصولات تولیدی شامل کنستانتره ، سیب ، انکور ، البالو ، زرد آلو ، گلابی و انواع آبمیوه همچنین پوره هلو ، زرد آلو و پوره سیب و گلابی است .

وضعیت بسته بندی

آبمیوه را به دو صورت بسته بندی می کنند :

  • در پاکت های آلومینیومی ( دلمپک ) 200 سی سی
  • یا پاکت های تترا پک به بازارهای داخلی عرضه می شود

و برای صادرات کنستانتره از شبکه های پلی اتیلن مخصوص مواد غذایی با ظرفیت 200 لیتر یا شبکه فلزی که دارای لایق های پلاستیک است استفاده می شود .

پوره را هم به دو طریق یکی در بسته های مخصوص اسپتیک( aspetic ) و دیگری در سردخانه با دمای c0 20 نگهداری می شود .

 

فهرست :

مقدمه          1

محصولات تولید کارخانه       2

وضعیت بسته بندی       2

تامین مواد اولیه        2

تکنولوژی تولید و بسته بندی           3

تعداد پرسنل          3

تفاوت آبمیوه           3

نوشابه بدون گاز 3

نکتار           4

سیستم کنترل کیفی        4

بررسی خط تولید کارخانه           4

باسکول             4

سیلو               5

پرس                5

پاستورازاسیون                    6

تغلیظ                        6

سالن تتراپک          9

پاکت سازی                  10

ری اریتور               11

نحوه گردش کار در انبار             12

انبار گردانی      14

روش تجزیه و تحلیل درونی          15

روند فروش              16

روند سود      16

روند سرمایه در گردش            20

صادرات          21

استراژی توسعه صادرات             22

سهام و سرمایه      24

فروش شرکت 25      

فروش در شرکت شهد ایران      26

فروش کالا  28

فروش نسیه        29

پرسنل بخش واحد فروش شرکت شهد ایران  30

نقش و ارتباط واحد فروش   31

اهداف بخش فروش   32

شرکت سهامی    34

توزیع نیروی انسانی   36

مشخصات ماشین آلات تولیدی    38

منبع     39

 

توجه : موارد زیر نیز در سایت وجود دارند

 

گزارش کاراموزی و پروژه شرکت شهدآب آذربایجان فرمت ورد 40 صفحه

پروژه و کاراموزی کارخانه شهد آب ارومیه برای صنایع غذایی ، با فرمت ورد ، 37 صفحه

گزارش کاراموزی شرکت شهد ایران ( تولید کننده آبمیوه و کنستانتره ) برای صنایع غذایی ، با فرمت ورد 39 صفحه

                                          


دانلود با لینک مستقیم


گزارش کاراموزی کارخانه آبمیوه

گزارش کاراموزی کارشناسی رشته صنایع غذایی پیرامون تولیدات شرکت پارس مینو

اختصاصی از فایل هلپ گزارش کاراموزی کارشناسی رشته صنایع غذایی پیرامون تولیدات شرکت پارس مینو دانلود با لینک مستقیم و پر سرعت .

گزارش کاراموزی کارشناسی رشته صنایع غذایی پیرامون تولیدات شرکت پارس مینو


گزارش کاراموزی کارشناسی رشته صنایع غذایی پیرامون تولیدات شرکت پارس مینو

 

 

 

 

 

 

 



فرمت:word(قابل ویرایش)

تعداد صفحات:163

 

 

« آشنایی کلی با مکان کارآموزی »

شرکت صنعتی پارس مینو ( سهامی عام ) در سال 1338 بصورت سهامی عام تاسیس وتحت شماره 6980 در اداره ثبت شرکت ها و مالکیت صنعتی به ثبت رسید و در مهر ماه سال 1360 مشمول بند « ب » قانون توسعه و حفاظت صنایع ایران و تحت پوشش سازمان صنایع ملی قرار گرفت.

 تاریخچه کارخانه:

مقدمات اولیه کارخانه مینو در سال 1340 توسط آقای خسرو شاهی آماده شد .وبنا بر تصمیم گیری ایشان به نام فرزند بزرگشان « مینو » نامیده شد. در سال 1343 کارگاه آبنبات سازی که تولید آن در دو بخش آبنبات و تافی بود راهاندازی شد. این کارگاه به کارخانه مینوی خرمدره منتقل شد. اواخر سال 1343 کارگاه ویفر ، بیسکویت سازی ، لوازم آرایشی وبهداشتی ( بجای کارگاه سوخاری کنونی ) شروع بکار کرد که پس از آن آدامس دراژه در سال 1346 ، کارگاه پفک در سال 1347 و آدامس بادکنکی 1348 و آدامس استیک در سال 1349 و نهایتا” در سال 1352از کارگاه تولید سوخاری بهره برداری شد. پس از سال 1352 زمین مجاور کارگاه ها خریداری شد و کارگاه دارویی به آنجا منتقل شد. تا سال 1359 مدیریت کارخانه به عهده آقای خسرو شاهی بود که تهران شامل دو بخش : بخش قاسم و پرسیس ( تولید اجناس صادراتی ) و کارخانه مینوی خرمدره تحت پوشش ایشان بود. سرانجام کارخانه در همان سال توسط دولت مصادره شد و زیر نظر سازمان گسترش صنایع ملی در آمد. در حال حاضر مدیر عامل مهندس امامی و کارگاه دارویی وغذایی تحت مدیریت متفاوت مشغول بکارند. مساحت کلی کارخانه220000 مترمربع است. کارگاههای غذایی تحت لیسانس انگلستان و کارگاههای آرایشی و بهداشتی تحت لیسانس پارس هستند که پس ازانقلاب بصورت مستقل عمل کرده . این کارخانه هم اکنون وابسته به بنیاد وتحت نظر سازمان صنایع ملی ایران است. در سال 1371 شرکت صنعتی پارس مینو از لحاظ صادرات در بین 75 شرکت صادر کننده سازمان صنایع ملی ایران در مقام اول قرار گرفت و دارای گواهی ISO می باشد.

 شرکت صنعتی پارس مینو کیلو متر 8 جاده مخصوص کرج در کنار شرکت پارسه قوه تحت پوشش گروه صنایع ملی ایران یکی از عظیم ترین کارخانجات مواد غذایی در خاور میانه می باشد و در حال حاضر فعالیت خود را گسترش می دهد.

نوع تولیدات :

محصولات غذایی :

بیسکویت ،ویفر ، شکلات ، آدامس ،پفک نمکی ، سوخاری ،کشمش

 محصولات دارویی:

قرص، آمپول، شربت، پماد، قطره

 محصولات آرایشی – بهداشتی:

شامپو ،کرم، عطر، رنگ مو، ادو توالت، گلیسیرین

 مقدمه:

درک موقعیت تاریخی انسان در گذر از مرز قرن ها در ابعاد متفاوت ،گسترده وسیعی را در جنبه های مختلف در مقابل متفکرین گسترده است آنچه در این میان بیش از هر موضوع دیگری اذعان به محدود بودن منابع غذایی در جهان ونیز پراکندگی غیر عادلانه آن در جوامع کنونی این حجم وسیع دندانهای گشوده را که با ضریب نزدیک به 3% در سال نیز در حال گسترش است.با چه غذایی می توان پر کرد؟ و با کدام فرضیه قابل قبول می توان نظریه ماستوس را مردود دانست و با تولیدی به حجم قرین به نیاز بیش از 7 میلیارد ی کره خاکی رسید.که این خود فقط بخشی ضروری از نیازهای بستری در قرن آتی است که آنها نیز هر یک به فاجعهای می مانند در همین ابعاد.

گفته می شود « سده بیست ویکم ، نزاع بر سر منابع غذا وآب خواهد بود … »

منتزع از فاجعه جهانی موضوع ، اگر مسئله را در چهارچوب جغرافیایی کشورمان نیز مطرح نماییم ، سرزمین مقدسی که خداوند آب و هوای هفت اقلیم عالم را در آن به ودیعه نهاده و بر گستردۀ خاکش ثروتی عظیم و توانی بی کران منظور داشته است ، اگر شکر نعمتش را با همت مردانه ای برنیاوریم و با گریز از وادی بی برنامگی و سر درگمی ،تصمیمات غیر منطقی ، روش های خلق الساعه و مدیریتهای ضعیف و غیر علمی نعمتش را سپاس نگوییم خیلی سریعتر از آنچه به وهم گنجد ابعاد فاجعه ملموس خواهد بود

سده بیستم میلادی هنوز به سالهای میانی نرسیده بود که نام آن را قرن اتم گذاشتند ودر همان سالها بود که نخستین بمبهای اتمی به دست آدمی آزمایش می شد وآزمایشگاه آن پهنه زیست محیطی خود آدمی و موجودات زنده دیگر انتخاب شده بود!چند سالی نگذشته بود نام دیگری بر روی این قرن نهادند و آن را « قرن تکنولوژی» یا « قرن فن آوری » خواندند و در سالهای پایانی این قرن به قرن فضا ،قرن موشک و قرن کامپیوتر مشهور شد. هنوز در سالهای آغازین قرن 21 هستیم که نام « قرن غذا »را برایش برگزیدهاند واین نامی است که از سوی دانشمندان و متخصصان مواد غذایی انتخاب و بسیاری از جامعه شناسان وسیاستمداران نیز این حقیقت شگفت را پذیرفته اند که در قرن بیست ویکم هیچ گونه سلاح کشتار جمعی به کار گرفته نخواهد شد،اما نباید پنداشت که در قرن حاضر هیچ گونه تهدیدی برای آدمیان و موجودات زنده دیگر وجود نخواهد داشت ولحظه انفجار نزدیک است.

آنچه قطعی است و برخورد با آن گریزی نیست واقعیت حدود 80میلیون جمعیت در گذر از قرن حاضر است. در کشوری که در ابعاد فرهنگی در جدالی نامحدود با قدرت های جهانی است و در همین راستا الگویی معتبر که اگر خودمان را در این صفحاتی که در دسترس دارید، محدود به تربیت نیروی انسانی آن هم محدود در موضوع غذا بدانیم، باری بس سنگین تر از توانمان بر دوش داریم. انتظاری که از شما عالمان در علوم غذایی وشما صاحبان صنایع غذایی در گذر از این راه داریم این است که در حصول به هدف یاریمان کنید ودر یافتن طریق معرف در این برهوت راهگشایمان باشید.

 مواد مورد استفاده در کارخانه:

نمک طعام: نمک طعام به عنوان یک تشدید کننده طعم در محصولات استفاده می شود. به میزان ( 0/2-0/3 ) درصد. برخی موارد به عنوان نگهدارنده نیز کاربرد دارد.

نشاسته: نشاسته پلیمری از مولکول های گلوکز است. این ماده در بافت های گیاهی بصورت دانه های جدا از هم یا گرانول وجود دارد.

رنگ های مجاز خوراکی: رنگ های مجاز خوراکی جزء دسته رنگ های که بطور طبیعی وجود نداشته و به صورت سنتیتک ساخته می شوند. تایید شده را که محلول در آب هستندمی توان از طریق رسوب روی هیدروکسید آلومینیم به صورت پودری نامحلول در آب درآورد.حدود مجاز استفاده از این رنگ ها در موارد مختلف متفاوت است.

آرد گندم : آرد گندم محصول عمده در تولید فرآورده های ی مثل بیسکویت وکیک ها می باشد که دارای ترکیباتی چون پروتئین ، چربی ،هیدراتهای کربن و… می باشد که این ترکیبات بسته به نوع گندم ،منطقه کشت و درجه آرد متفاوت هستند.

روغن نباتی: روغن نباتی جهت افزایش طعم و انرژی همچنین قابلیت انعطاف و برش پذیری بهتر محصولات استفاده می شود.

شیر خشک: شیر خشک هم از جهت افزایش ارزش غذایی ، طعم وحجم بیشتر کاربرد دارد و هم با خاصیت بافری خود تا اندازهای به عمل تخمیر فرمانتاسیون کمک می کند. در تهیه بیسکویت ها از شیر خشک بدون چربی به میزان 14-12% استفاده می کنند.

بی کربنات سدیم وآمونیوم: بی کربنات سدیم وآمونیوم ترکیب شیمیایی هستند که جهت ترد کردن یا پوک کردن در محصولات استفاده می شود. لازم به ذکر است که در صورت استفاده از بی کربنات آمونیوم دقت شود تا محصول نهایی بوی اوره یا آمونیاک به خود نگیرد.

پیرو فسفات : پیرو فسفات ترکیب شیمیایی است که جهت ترد کردن یا پوک کردن در محصولات استفاده می شود.

اسانس : اسانس ها موادی هستند که یا بصورت شیمیایی یا بصورت سنتیتک وجود داشته و جهت ایجاد طعم یا مزه یا عطر خاصی به کار میروند.

پودر کاکائو: پودر حاصل از آسیاب شدن دانه کاکائوتمیز شده،برشته شده را پودر کاکائو می گویند.

کره کاکائو: کاکائو چربی خارج شده از پودر کاکائو که دارای (50-52) %چربی است را کره کاکائو می گویند. که دارای نقطه ذوب 33 درجه.

لیسیتین: لیسیتین به منظور کاهش ویسکوزیته کره کاکائو استفاده می شود.

متابی سولفیت سدیم : از دسته مواد شیمیایی مورد استفاده در تهیه محصول می باشد.دارای خاصیت نگهدارندگی با قلیایی کردن محیط.

گلوکز: یک مونو ساکارید است که در دسته قندهای احیاء کننده می باشد.

شربت اینورت: شربت اینورت حاصل از دو مونو ساکارید گلوکز و فروکتوز می باشد. قهوه ای رنگ است و برای استفاده باید خنثی شود.

آلبومین:یکی از چهار جزء اصلی پروتئین گندم است که در آب محلول بوده و در اثر حرارت منعقد می شود.

پودر نارگیل: از آسیاب شدن میوۀ نارگیل حاصل شده و در انواع بیسکویت های نارگیلی و شکلات پرشین استفاده می شود.

کارنو با واکس: پودری شبیه به پودر شیر خشک که کار آن ایجاد حالت براق در دراژه های مروارید می باشد. از برگ های درخت پالم بدست می آید.

کوپاژل CMC: امولسیفایرقوام دهنده شربت است که در تهیه آدامس کاربرد دارد. (کربوکسی متیل سلولز)

پودر آب پنیر: طعم دهنده وتقویت کننده

Base آدامس : Base آدامس نامحلول در آببا منشأ گیاهی یا سنتیتیک(پلی اتیلن پارافین و آنتی اکسیدان ها وچیکل ) Base (15-30)% آدامس را تشکیل می دهد.

پودر شکر: پودر شکر به عنوان طعم دهنده و افزایش دهنده انرژی

گلیسیرین : گلیسیرین الکلی پلی هیدریک ، جاذب الرطوبه و نرم کننده ، اصلاح کننده کریستالیزاسیون است.

وانیل : وانیل معطر کننده طبیعی یا سنتتیک مشتق شده از لیگنین لیکدر های سولفیت آب پنیر   می باشد.

کلسیم کلراید: افزودنی عمومی است.

دکستروز (گلوکز) : حاصل از ذرت که بصورت صنعتی در اثر حرارت و اسید یا آنزیم بر نشاسته وهیدرولیز آن گلوکز را تولید می کنند.

عصارۀ مالت: قسمت اعظم در صنایع تخمیری بکار گرفته می شود. منبع آن آلفا آمیلاز است که باعث هیدرولیز نشاسته به قندهای قابل تخمیر مثل دکسترین و مالتوز می شود.

اسید سیتریک: آنتی اکسیدانی خوراکی حاصل از تخمیر محلول های قندی توسط کپک هاست، جاذب الرطوبه و ترش مزه است.

سوربیتول: الکلی پلی هیدریک تثبیت کننده رطوبت با حلالیت زیاد است.

آمونیوم کلراید : تقویت کننده خمیر وتشدید کننده طعم در کالاهای نانوایی ومنبع نیتروژن برای مخمرها.

« آزمایشات کنترل کیفیت »

واحد کنترل کیفیت وآزمایشگاه :

این واحد شامل 4قسمت اصلی میباشد:

 

  • آزمایشگاه شیمی مواد غذایی    
  • آزمایشگاه میکروبیولوژی مواد غذایی
  • دپارتمان توسعه وتحقیقات
  • کنترل کیفیت  

 

آزمایشگاه شیمی مواد غذایی:

در این آزمایشگاه با سه نوع ماده برخورد داریم که آزمایشهایمخصوص و مرتبط با آنها انجام میگردد

الف)مواد اولیه خوراکی در صنعت غلات که عبارتند از:

آرد- روغن – شکر – نشاسته – شیرخشک – پودر آب پنیر – پودر کاکائو – گلوکز- شربت اینورت – اسانس های مجاز خوراکی – رنگ های مجاز خوراکی – مواد افزودنی مانند لیسیتین – بی کربنات آمونیوم – بی کربنات کلسیم وپتاسیم

ب)مواد بسته بندی :

سابقه بسته بندی مواد غذایی هنوز کاملا” مشخص نیست اما از زمان های بسیار قدیم به روش های ابتدایی از بسته بندی مواد غذایی استفاده شده است به عنوان مثال میتوان به کاربرد صدف های تو خالی ،الوار هایی تو خالی پوست حیوانات اشاره کرد.

تغیر اساسی وعمده در وضعیت بسته بندی مواد غذایی را می توان به صورت زیر خلاصه کرد:

1-حفاظت از کیفیت وکمیت موا د غذایی تا مرحله مصرف

2-سهولت در حمل ونقل و توزیع و مصرف مواد غذایی

 

3-ارائه اطلاعات مورد نیاز در ماده اولیه کیفیت طول عمر و نحوه مصرف محصول

4-ارائه اطلاعات مربوط به امکان استفاده مجدد از ماده بسته بندی شده

5-سهولت امکان استفاده از ماده غذایی بسته بندی شده در صورتی که قرار است در چند نوبت از آن استفاده شود .

یکی از نکاتی که در این آزمایشگاه در مورد مواد اولیه بسته بندی باید مورد توجه قرار گیرد به شرح زیر است

1-برای ماده غذایی سمی نباشد

2-از نظر شکل ظاهری مناسب باشد و توجه مصرف کننده را جلب کند وبتواند به فروش محصول کمک کند .

3-در برابر نور، رطوبت، گرما، چربی، گاز، بو مقاوم باشند .هر چند که در برخی موارد خاص باید نسبت به نفوذ رطوبت و گاز قابل نفوذ باشد .

4-از نظر اقتصادی مقرون به صرفه باشد.

5-در برابر عوامل خارجی مانند ضربات مکانیکی،حشرات ومیکروارگانیسم ها مقاوم باشند.


دانلود با لینک مستقیم


گزارش کاراموزی کارشناسی رشته صنایع غذایی پیرامون تولیدات شرکت پارس مینو

دانلود مقاله گزارش کاراموزی رشته الکترونیک - کنترل الکترونیکی موتور دیزل

اختصاصی از فایل هلپ دانلود مقاله گزارش کاراموزی رشته الکترونیک - کنترل الکترونیکی موتور دیزل دانلود با لینک مستقیم و پر سرعت .

 

 

 

امروزه دیگر از خودروهای پر سر و صدا که دود می کنند خبری نیست. دیگر صحبت از شتاب گیری ضعیف نیست. اکنون اول آلایندگی بعد شتاب و توان قابل قبول، مطرح است. امروزه استفاده از موتور دیزل در خودروها بشدت افزایش یافته و دیگر کسی با دید قبلی به این خودروها نمی نگرد، بلکه نام دیزل یک موتور کم مصرف، پاک و کم هزینه را تداعی می کند.
همه این ها مرهون سیستم های کنترل الکترونیک است که موتورهای دیزل را بهبود بخشیده است. البته اگر طراحی بهینه ای انجام شود سیکل دیزل به گونه ای است که همیشه حجم هوای اضافه در سیلندر موجود است. با استفاده از این موضوع و ایجاد شرایط احتراق کامل موتور دیزل فوق العاده موتور پاکی است در ضمن این سیکل این اجازه را می دهد تا از سوخت های دیگر مانند سوخت های گیاهی و سوخت های ترکیبی نیز استفاده نمود.
با این همه الکترونیک کار را بسیار آسان نموده است. در سیستم های جدید کنترل بهتر و محسوس تری انجام می گیرد که با بالا بردن فشار سوخت به احتراق بهتر و شتاب بیشتر کمک می نماید. برای جلوگیری از کوبش و کاهش صدای موتور از پیش پاشش یا پاشش ترتیبی استفاده می شود. در بعضی سیستم ها نیز می توان از پس پاشش بعنوان یک عامل برای کاهش آلایندگی استفاده کرد.
در این پروژه با چگونگی عملکرد سیستم های کنترل سوخت رسانی موتورهای دیزل (EDC) ، واحد کنترل الکترونیکی (ECU) (در خودرو به هر واحد هوشمند الکترونیکیECU گفته می شود. اما این واژه بیشتر در مورد کنترلر موتور بکار برده می شود.) ، برخی سنسورها و عملگرهای موتور دیزل که در خودروها و وسایل نقلیه تجاری کاربرد دارند و پیرامون این سیستم ها و اجزای مرتبط با آنها آشنا می شویم. این سیستم ها انحصاری است و قوی ترین، قدیمی ترین و کامل ترین آنها متعلق به شرکت بوش می باشد. البته شرکت های دیگری نیز وارد این عرصه شده اند مانند دلفی و غیره، ولی در ابتدای راه می باشند. شرکت بوش با توسعه پمپ های قدیمی (مکانیکی) خود و استفاده از الکترونیک در پمپ های جدید در دنیای دیزل حرف اول را می زند.
بطور خلاصه روش کار در موتورهای دیزل مجهز به EDC بدین صورت است که: ابتدا برخی کمیتها مانند دما ، فشار ، ضربه ، دور موتور و وضعیت پدال گاز توسط سنسورها دریافت و به EDC گزارش می شوند. سپس EDC با استفاده از جداول و فرمول های از پیش تعیین شده موجود در حافظه خود ، یک سری سیگنال‌های الکتریکی تولید کرده و به عملگرها می فرستد. عملگرها نیز به نوبه خود سیگنالها را به کمیت‌های غیر الکتریکی مانند مکانیکی در شیر برقی ، دما در هیتر و غیره تبدیل می‌کنند و در نهایت عملکرد موتور به بهترین شکل ممکن کنترل می شود.
اینجانب تلاش نمودم تا با جمع آوری و ترجمه متون شرکت بوش و اطلاعات سایت شرکت بوش مجموعه اطلاعات مفیدی را گردآوری نمایم، امیدوارم سودمند واقع گردد.

 

عرفان یادگاری
بهار 88

 

 

 

 

 

 

 

 

 

 

 


فصل اول

 

کنترل الکترونیکی دیزل EDC (Electronic Diesel Control)

 

هدایت الکترونیکی مدرن موتور دیزل امکان تغییر و تنظیم دقیق و با اختلاف کم مقادیر تزریق را فراهم می‌کنند. فقط این چنین خواسته‌های فراوان موتور امروزی می‌توانند برآورده شوند. کنترل الکترونیکی دیزل EDC
(Electronic Diesel control)در سه گروه سیستم سنسورها، مقایسه‌کننده‌ها با مقادیر ایده‌آل (پردازنده) و عملگرها تقسیم‌بندی می‌شوند.

 


الگوریتم 1-1 اجزای اصلی EDC.

 

 

 

 

 


1-1 نگاه اجمالی به سیستم
کنترل الکترونیکی دیزل مدرن EDC به واسطه توان محاسباتی شدیداً افزایش یافته میکروکنترل‌های امروزی در موقعیتی است که بتواند خواسته‌های فوق‌الذکر را برآورده سازد.
برخلاف خودروهای دیزلی با پمپ‌های انژکتور که رگلاتورهای سنتی مکانیکی داشتند، راننده در یک سیستم EDC تاثیر مستقیمی بر حجم سوخت تزریقی (مثلاً از طریق پدال گاز و یا سیم‌کشی) ندارد. حجم سوخت تزریقی بیشتر توسط کمیت‌های مؤثر گوناگون معین می‌شود. از جمله آنها عبارتند از:
- خواسته (واکنش) راننده (وضعیت پدال گاز)
- شرایط کارکرد
- دما موتور
- تاثیرات بر انتشار مواد آلاینده و غیره
مقدار سوخت تزریقی براساس این کمیت‌های تاثیرگذار در پردازنده محاسبه می‌گردد. همچنین لحظه تزریق نیز می‌تواند تغییر یابد و این مستلزم یک برنامه اطمینان بخش است که تفاوت‌ها و تغییرات را تشخیص دهد و به تناسب تاثیرات، تدابیر متناسب را اجرا کند (مثلاً محدود کردن گشتاور و یا افزایش دور ضروری در دور آرام). در EDC به همین دلیل چند مدار تنظیم وجود دارد.
کنترل الکترونیکی دیزل همچنین تبادل اطلاعات و داده‌ها را با سیستم‌های الکترونیکی دیگر در خودرو مانند مثلاً کنترل لغزش خودرو (ASR)، کنترل الکترونیکی جعبه دنده (EGS) یا برنامه پایداری الکترونیکی (ESP) امکان‌پذیر می‌سازد. به این ترتیب کنترل موتور می‌تواند در سیستم کلی خودرو یکپارچه شود.
(مثلاً کاهش گشتاور موتور در هنگام تعویض اتوماتیک دنده، تطبیق گشتاور موتور با چرخ‌ها، آزاد کردن تزریق سوخت توسط سیستم ضد سرقت و غیره).
سیستم EDC کاملاً در سیستم عیب‌یابی خودرو یکپارچه شده است. آن همه خواسته‌های
(On-Board Diagnosis)، (European OBD) EOBD, OBD یا OBD اروپایی را برآورده می‌کند.

 

1-2 الزامات
کاهش مصرف سوخت و آلاینده‌ها به همراه افزایش همزمان در توان و عملکرد و همچنین گشتاور چرخشی توسعه کنونی در حوزه تکنولوژی دیزل را طلب می‌کند. این موضوع در سال‌های اخیر منجر به کاربرد افزاینده سیستم‌های تزریق مستقیم (DI) در موتورهای دیزل شده است که در آنها فشار تزریق در برابر سیستم‌های تزریق غیرمستقیم (IDI) با اتاق چرخش هوا و روش اتاقک پیش احتراق به وضوح بیشتر است. از این طریق ساخت مخلوط سوخت و هوا بهتر انجام می‌شود.
قطرات ریز سوخت که به خوبی در هوا پخش شده‌اند آسان‌تر محترق می‌شوند. این چنین هیدروکربن‌های (HC) نسوخته کمتر در گاز خروجی به وجود می‌آیند. به علت تشکیل مخلوط بهتر و عدم از بین رفتن جریان بین اتاق پیش احتراق و اتاقک چرخش هوا با اتاق احتراق اصلی، مصرف سوخت موتورهای تزریق مستقیم نسبت به موتورهای با تزریق غیرمستقیم حدود10 تا 20% کاهش یافته است.
علاوه بر آن توقعات در مورد راحتی و آسایش رانندگی نیز بر خواسته‌های ما از موتور دیزل تاثیر می‌گذارند. در مساله کاهش سروصدا و انتشار مواد مضر (NOX، CO، HC, ذرات معلق) نیز خواسته‌های بالاتری مطرح می‌شوند. این موضوع منجر به توقعات بیشتر از سیستم انژکتور و تنظیمات آن در مورد
- فشارهای تزریق بالا
- فرم مسیر پاشش
- شروع تزریق متغیر
- پیش پاشش و در صورت نیاز پس پاشش
- در هر شرایط کارکرد، مقدار مناسب تزریق سوخت، فشار هوای ورودی و شروع تزریق
- مقدار سوخت حالت استارت بسته به دما
- تنظیم دور آرام مستقل از بار
- تنظیم سرعت حرکت خودرو
- باز خوراندن گاز خروجی تنظیم شده
- تلرانس‌های کوچک لحظه تزریق و مقدار تزریق سوخت و دقت بالا در مدت طول عمر خودرو (رفتار طولانی مدت)
سیستم‌های کنترل دور سنتی به وسیله ابزارهای تطابق گوناگون شرایط کارکرد موتور را دریافت کرده و کیفیت بالای ساختن مخلوط احتراق را تضمین می‌کنند. آنها البته در یک مدار تنظیم ساده روی موتور محدود می‌شوند و نمی‌توانند کمیت‌های مؤثر مهم مختلف را به سرعت دریافت کنند و یا اصلاً نمی‌توانند دریافت کنند.EDC با خواسته‌های در حال افزایش از یک سیستم ساده با مقادیر تنظیم الکتریکی به یک سیستم کنترل موتور پیچیده که تعداد زیاد از داده‌ها را در زمان واقعی می‌تواند پردازش کند توسعه یافته است.

 

1-3 بخش‌های سیستم
کنترل الکترونیکی دیزل EDC به سه قسمت تقسیم می‌شود.
1_پردازنده اطلاعات، سنسورها و نشانگرهای مقادیر درخواستی را طبق الگوهای محاسباتی ریاضی مشخص (الگوریتم‌های کنترل) پردازش می‌کند. آن سپس به عملگرها با سیگنال‌های خروجی الکتریکی فرمان می‌دهد. ضمنآً پردازنده، رابطه با سیستم‌های دیگر و نیز با رابط عیب‌یابی (Diagnostic) برقرار می‌سازد.
2_ حسگرها و نشانگرهای مقدار خواسته راننده، شرایط کاری (مثلاً دور موتور) و مقادیر خواسته راننده (مانند وضعیت پدال گاز) دریافت می‌کنند. آنها کمیت‌های فیزیکی را به سیگنال‌های الکتریکی تبدیل می‌کنند.
3_عملگرها سیگنال‌های الکتریکی خروجی از پردازنده را به کمیت‌های مکانیکی مبدل می‌کنند. (برای نمونه شیر برقی سیستم تزریق سوخت).

 

 

 

 

 


شکل 1-1 نگاه اجمالی اجزای EDC برای پمپ های تزریق سوخت ردیفی (خطی).

 

 

 

 

 

شکل1-2 نگاه اجمالی اجزای EDC برای پمپ های توزیع کننده VE..EDC مارپیچ (هلیکس) و کنترل دریچه (مجرا).

 

 

 


شکل1-3 نگاه اجمالی اجزای EDC برای پمپ های توزیع کننده کنترل شیر برقی VE..MV,VR.

 

 

 



شکل1-4 نگاه اجمالی اجزای EDC برای سیستم های یونیت انژکتور در خودروهای سواری.

 

 

 

 

 


شکل1-5 نگاه اجمالی اجزای EDC برای سیستم های یونیت انژکتور (UIS) و سیستم های یونیت پمپ (UPS) در وسایل نقلیه تجاری.

 

 

 


شکل1-6 نگاه اجمالی اجزای EDC برای سیستم های ریل مشترک (CRS) در خودروهای سواری.

 

 

 


شکل1-7 نگاه اجمالی اجزای EDC برای سیستم های ریل مشترک (CRS) در وسایل نقلیه تجاری.

 

 

 


فصل دوم

 

واحد کنترل الکترونیکی ECU (Electronic Control Unit)

 

با فن‌آوری دیجیتال مدرن امکانات متنوعی برای هدایت خودرو به وجود آمده‌اند. بسیاری از کمیت‌های فیزیکی مؤثر، می‌توانند همزمان تاثیر خود را بگذارند، طوری که سیستم‌ها به صورت بهینه کار کنند. پردازنده مرکزی سیگنال‌های الکتریکی سنسورها و نشان‌دهنده کمیت‌های درخواستی راننده را دریافت می‌کند. آن را ارزیابی می‌کند و سیگنال های کنترلی را برای هدایت عملگرها محاسبه می کند. برنامه پردازشگر در یک حافظه ذخیره شده است اجرای برنامه به عهده یک میکروکنترلر است.

 

2-1 وضعیت عملکرد
خواسته‌های زیاد و سطح بالایی از یک پردازنده وجود دارد و البته در ارتباط با:
- دمای محیط (در حرکت معمولی خودرو بین40- تا 85+ درجه سانتیگراد برای خودروهای سنگین و40- تا 70+ درجه سانتیگراد برای سواری)
- توانایی مقاومت در برابر مواد موجود در موتور (روغن، سوخت و غیره)
- رطوبت موجود در محیط
- تحریک مکانیکی مانند ارتعاشات ناشی از موتور

 

 

 


2-2 طرح و ساختار
پردازنده در یک محفظه فلزی قرار دارد. سنسورها، عملگرها و تغذیه جریان از طریق یک رابط دارای پین‌های بسیار زیاد به پردازنده متصل می‌گردند. اجزای ساختاری عملکرد جهت هدایت مستقیم عملگرها چنان در محفظه پردازنده یکپارچه شده‌اند که یک عایق حرارتی بسیار خوب نسبت به محفظه تضمین شود.
در هنگام نصب پردازنده روی موتور گرمای محفظه می‌تواند از طریق صفحه خنک تعبیه شده، به سوخت که دور پردازنده جریان دارد، منتقل شود (خنک‌کننده پردازنده، فقط خودروهای سنگین).
اغلب اجزای تشکیل‌دهنده الکترونیکی به صورت فن‌آوری SMD (اجزای مونتاژ شده روی سطح) ساخته می‌شوند. فقط بعضی اجزای عملکردی و سوکت ها سیم‌کشی شده‌اند. این موضوع یک ساختار دارای وزن کم ولی با فضای زیاد را ممکن می‌سازد.

شکل 2-1 طرحی از یک ECU برای سیستم ریل مشترک با انژکتور درون پیزو.
1- کلید مد تغذیه برق قدرت با تثبیت کننده ولتاژ 7- ASIC برای راه اندازی طبقه محرک
2- حافظه EPROM 8- ذخیره ولتاژ بالا (حامل شارژ ولتاژ بالا)
3- خازن پشتیبان باتری (برای تولید ولتاژ بالا) 9- اتصال
4- حسگر فشار جو 10- اتصال طبقه محرک
5- تغذیه برق قدرت ولتاژ بالا 11- کلید چندگانه (چندفاز) طبقه محرک
6- طبقات محرک قدرت بالا

 

2-3 پردازش داده‌ها
سیگنال‌های ورودی
سنسورها به همراه عملگرها، رابطه بین خودرو و پردازنده را به عنوان واحد پردازش برقرار می‌سازند.
سیگنال‌های ورودی آنالوگ
سیگنال‌های ورودی آنالوگ می‌توانند هر مقدار ولتاژ را بدون محدودیت در یک محدوده مشخص بپذیرند مثال‌هایی از کمیت‌های فیزیکی که به عنوان مقادیر آنالوگ آماده می شوند، مقدار دبی هوای ورودی، ولتاژ باتری، فشار داخل مانیفولد هوا و فشار هوای ورودی به موتور، دمای هوای مکیده شده و مایع خنک‌کن موتور هستند. آنها توسط یک مبدل آنالوگ دیجیتال (مبدل A/D) در میکروکنترلر پردازنده به مقادیر دیجیتال تبدیل می‌شوند که میکروپروسسور با آنها می‌تواند محاسبات را انجام دهد. مقدار تفکیک سیگنال وابسته به تعداد مرحله‌های تبدیل است.
سیگنال‌های ورودی دیجیتال
سیگنال‌های ورودی دیجیتال فقط دو حالت دارند: بالا و پایین. مثال‌هایی از سیگنال‌های ورودی دیجیتال سیگنال‌های کلید (خاموش / روشن) و یا سیگنال سنسورهای دیجیتال مثل پالس‌های دور موتور در سنسور هال هستند. آنها
می‌توانند مستقیماً توسط پردازنده پردازش شوند.
سیگنال‌های ورودی به شکل پالس
سیگنال‌های ورودی به شکل پالس از سنسورهای القایی با اطلاعاتی درباره دور موتور و علامت مربوط در یک بخش مداری در پردازنده آماده‌سازی می‌شوند. در این حال پالس‌های نویز از بین می‌روند و سیگنال‌های پالسی شکل به سیگنال‌های مستطیلی مبدل می‌شوند.

 


آماده‌سازی سیگنال
سیگنال‌های ورودی با یک مدار محافظ به حداکثر ولتا مجاز محدود می‌شوند. سیگنال مفید توسط فیلتر کردن تا حد زیادی از سیگنال‌های مزاحم همراه خود رها می‌شوند و در صورت نیاز توسط تقویت‌کننده به حد ولتاژ ورودی مجاز پردازنده تطبیق می‌یابند. بسته به درجه یکپارچه بودن سنسور، آماده‌سازی سیگنال می‌تواند بخشی از آن یا کل آن در سنسور اتفاق بیفتد.
پردازش سیگنال
پردازنده، مرکز کنترل جریان عملکرد است. در میکروکنترلر، الگوریتم‌های کنترل و تنظیم اجرا می‌شوند. سیگنال‌های ورودی که توسط سنسورها و نشان‌دهنده‌های مقدارهای خواسته راننده و رابط‌ها برای سایر سیستم‌ها آماده شده‌اند، به عنوان کمیت‌های ورودی هستند. آنها در پردازشگر یک بار دیگر تغییر می‌یابند و به کمک برنامه و خط مشخصه و میدان مشخصه، سیگنال‌های خروجی محاسبه می‌شوند. یک کوارتز میکروکنترلر را زمان‌بندی می‌کند.
حافظه برنامه
میکروکنترلر یک برنامه احتیاج دارد که در یک حافظه نوع سخت (ROM یا EPROM) قرار دارد، به علاوه داده‌های خاص (داده‌های منفرد، خطوط مشخصه و میدان‌های مشخصه) در این حافظه موجود هستند. در این جا اطلاعات غیرقابل تغییر هستند، که در زمان کار خودرو نیز نمی‌توانند تغییر کنند.
تعداد زیاد مدل‌های خودرو، که مجموعه‌های داده‌های مختلفی را طلب می‌کنند، یک سیستم و شیوه را جهت کاهش انواع مدل‌های پردازنده موردنیاز برای سازندگان خودرو را طلب می‌کند. در این مورد محدوده حافظه جهت کاهش انواع مدل‌های پردازنده‌های موردنیاز برای سازندگان خودرو را طلب می‌کند. در این مورد محدوده حافظه کامل (FEPROM) Flash EPROM با برنامه و مجموعه‌های داده مختص مدل مربوط در پایان تولید خودرو برنامه ریزی می‌شوند (برنامه‌سازی پایان خط تولید EOL: End Of Line) یک امکان دیگر نیز این است

 

که در حافظه، چندین مدل گوناگون از داده‌ها (مثلاً داده‌های کشورهای مختلف) داده شوند که سپس از طریق برنامه‌نویسی در انتهای خط تولید انتخاب شوند.
حافظه داده‌ها
یک حافظه قابل نوشتن و خواندن (RAM) لازم است تا داده‌هایی قابل تغییر مانند مقادیر محاسبه‌ای و مقدارهای سیگنال‌ها را ذخیره کند. RAM برای عملکرد خود احتیاج به تغذیه دائم برق دارد. در صورت خاموش شدن پردازنده با بستن سوییچ این حافظه، کلیه موجودی داده‌های خود را از دست می‌دهد (حافظه فرار). مقادیر تطبیقی (مقادیر دریافت شده از طریق شرایط موتور و شرایط کارکرد خودرو) باید در این حالت پس از روشن شدن دوباره پردازنده مجدداً دریافت شوند. داده‌هایی که نباید از دست بروند (مثلاً کدهای دزدگیر یا ذخیره‌کننده عیوب خودرو) باید همواره در یک EEPROM ذخیره شوند، موجودی اطلاعات در این حافظه حتی در صورت جدا کردن سر باتری نیز از بین نمی‌روند.

 


الگوریتم 2-1 پردازش سیگنال در ECU .

 


ASIC
به خاطر پیچیدگی در حال افزایش عملکردهای پردازنده، توان محاسباتی میکروکنترلر کفایت نمی‌کند. در اینجا ASIC (مدار یکپارچه ویژه کاربرد Application Specified Integrated Circuit) کمک می‌کند این ICها طبق الگوی توسعه پردازنده طراحی و ساخته شوند. آنها مثلاً شامل یک RAM اضافی، ورودی‌ها و خروجی‌ها هستند و می‌توانند سیگنال‌های PWM تولید کنند و به بیرون دهند.
مدول کنترل
پردازنده از یک مدول کنترل برخوردار است که در ASIC یکپارچه شده است. میکروکنترلر و مدول کنترل یکدیگر را کنترل می‌کنند. در صورتی که یک خطا تشخیص داده شود، آنها هر دو مستقل از یکدیگر سیستم تزریق را خاموش کنند.
سیگنال‌های خروجی
میکروکنترلر با سیگنا‌ل‌های خروجی مرحله پایانی را کنترل می‌کند، این مراحل پایانی در برابر اتصال کوتاه به بدنه و یا ولتاژ باتری و همچنین در برابر خراب شدن در اثر اضافه بار الکتریکی حفاظت شده است. این خطاها و نیز سیم‌های پاره شده و یا اشکالات سنسور توسط کنترلر تشخیص داده شده و به میکروکنترلر اعلام می‌شوند.
سیگنال‌های کلیدزنی
با سیگنال‌های کلیدزنی عملگرها می‌توانند روشن و خاموش شوند. (مثلاً فن موتور)
سیگنال‌های PWM
سیگنال‌های خروجی دیجیتال می‌توانند به عنوان سیگنال‌های PWM بیرون داده شوند. این سیگنال‌های مدوله پالس گسترده سیگنال‌های مستطیلی شکل با فرکانس ثابت ولی زمان خاموش و روشن شدن متغیر هستند. با این سیگنال‌ها مبدل‌های الکترونیوماتیکی در هر موقعیتی می‌توانند کنترل و فرماندهی شوند. (مثل شیر بازخوراندن دود خروجی).

 

 

 

a- فرکانس ثابت
b- متغیر نسبت به زمان

 

 

 


نمودار 2-1 سیگنال های PWM .

 

ارتباطات داخل پردازنده
این اجزای ساختمانی حاشیه‌ای، که میکروکنترلر را در کارش حمایت و پشتیبانی می‌‌کنند باید با آن ارتباط داشته باشند. این حالت از طریق سیستم گذرگاه CAN اتفاق می‌افتد. میکروکنترلر از طریق گذرگاه آدرس مثلاً آدرس RAM را به بیرون می‌فرستد که محتوای حافظه آن باید خوانده شود. سپس از طریق گذرگاه داده‌ها به داده‌های متعلق به آدرس منتقل می‌شوند در توسعه اولیه در این حوزه، خودروها با یک ساختار گذرگاه 8 بیتی کار می‌کردند یعنی باس داده ها از هشت سیم تشکیل می‌شود که از طریق آنها 256 مقدار می‌توانستند منتقل شوند. با گذرگاه آدرس 16 بیتی معمول همراه این سیستم‌ها 65536 آدرس می‌توانند مخاطب قرار گیرند. سیستم‌های پیچیده امروزی 16 و یا حتی 32 بیت گذرگاه داده‌ها را طلب می‌کنند. برای آنکه تعداد پین‌ها در بخش‌های تشکیل دهنده کم شود. گذرگاه آدرس و داده می‌توانند با یکدیگر مولتی‌پلکس شوند، یعنی آدرس و داده‌ها به شکل زمانی به جای یکدیگر منتقل شوند و از سیم‌های یکسان استفاده می‌کنند.

 

 

 

سیستم‌ عیب‌یابی
کنترل سنسورها
در کنترل سنسورها به کمک عیب‌‌یابی یکپارچه بررسی می‌شود که آیا سنسور جریان کافی دارد و آیا سیگنال آن در محدوده مجاز قرار دارد (مثلاً دمای بین oC40- و oC50+). سیگنال‌های مهم، تا جایی که ممکن باشد، 3-2 برابر (دوبل) اجرا می‌شوند یعنی این امکان وجود دارد در حالت معیوب بودن یکی از دو تا سه انتخاب موجود استفاده شود.
شناخت عیب
تشخیص عیب در حوزه کنترل یک سنسور ممکن است در عملکرد با مدار کنترل بسته (مثلاً کنترل فشار) خارج شدن از یک محدوده تنظیم نیز می‌تواند تشخیص داده شود.
یک مسیر سیگنال به عنوان خراب دسته‌بندی می‌شود، وقتی که یک خطا در مدتی بیش از زمان از پیش تعریف شده وجود داشته باشد در این صورت خطا به همراه شرایط محیطی همراهش، که خطا در آن شرایط افتقا افتاده (مثلاً دمای آب خنک‌کنندة، در موتور و غیره)، در ذخیره‌کننده خطاهای پردازنده ذخیره می‌شوند.
برای بسیاری از خطاها یک تشخیص ـ دوباره ـ بی‌عیب شدن نیز ممکن است. در این مورد مسیر سیگنال یک زمان تعریف شده به عنوان بدون عیب تشخیص داده شود.
برطرف کردن عیب
در صورت آسیب دیدن محدوده سیگنال مجاز در یک سنسور، یک مقدار ثابت از پیش تعریف شده به آن نسبت داده می‌شود. این شیوه در مورد سیگنال‌های ورودی زیر به کار می‌رود:
- ولتاژ باتری
- دمای روغن، هوا و مایع خنک‌کننده
- فشار هوای ورودی به موتور
- فشار اتمسفر و دبی هوا
در مورد عملکردهای مهم، واکنش‌های جانشین هم وجود دارند، که ادامه حرکت خود را مثلاً تا اولین تعمیرگاه ممکن می‌کنند. از کار افتادن یک پتانسیومتر پدال گاز می‌تواند مثلاً با مقدار پتانسیومتر دوم محاسبه گردد وقتی که پتانسیومتر اول مقادیر بسیار با نوساناتی را نشان می‌دهد و یا موتور با یک دوره موتور ثابت و پایین حرکت می‌کند.

 

2-4 عملکرد EDC
پردازنده سیگنال‌های سنسور خارجی را ارزیابی می‌کند و آنها را تا حد ولتاژ مجاز محدود می‌کند. میکروپروسسور از این داده‌های ورودی و با توجه به میدان‌های مشخصه ذخیره شده در خود زمان‌های پاشش (و مدت آنها را) محاسبه می‌کند و این زمان‌ها را به جریان‌های زمانی سیگنال‌ها تبدیل می‌کند که با شرایط کارکرد موتور نیز همخوانی داشته باشد. به خاطر دقت موردنظر و حرکت بالای موتور یک توان محاسباتی بالا موردنیاز است.
به وسیله سیگنال‌های خروجی، رابط‌های خروجی پردازنده کنترل می‌شوند که توان کافی را برای همه عملگرها (مثل شیر برقی) فراهم می‌کنند. به علاوه موقعیت‌دهنده‌های عملکرد موتور (مانند بازخوراندن گاز خروجی سیلندر و یا هوای ورودی سیلندر) و برای عملکردهای کمکی دیگر (مثل رله شمع پیش گرمکن و یا تهویه مطبوع Air condition) کنترل می‌شوند. این خروجی‌های پردازنده در مقابل اتصال کوتاه و نیز خرابی در اثر اضافه بار الکتریکی محافظت می‌شوند. خطاهایی از این نوع و نیز سیم‌های پاره شده به میکروپروسسور اعلام می‌شوند.
عملکرد عیب‌یابی خروجی پردازنده برای شیرهای برقی مسیرهای سیگنال معیوب را نیز تشخیص می‌دهد. به علاوه بعضی از سیگنال‌های خروجی از طریق رابطهایی به سیستم‌های دیگر در خودرو داده می‌شوند، در چارچوب یک اصل امنیتی، پردازنده بر کل سیستم تزریق انژکتوری نظارت می‌کند.

 


تنظیم شرایط کارکرد
برای آنکه موتور در همه شرایط کارکرد با احتراق بهینه کار کند، مقدار تزریق مناسب لحظه‌ای در پردازنده محاسبه می‌گردد. در این مورد باید کمیت‌های گوناگونی مدنظر قرار گیرند.
مقدار سوخت در حالت استارت
در هنگام استارت مقدار سوخت وابسته به دمای مایع خنک‌کننده و دور موتور محاسبه می‌شود. مقدار سوخت استارت با روشن شدن سوییچ تا رسیدن به یک حداقل دور موتور ارسال می‌شود. راننده تاثیری بر مقدار سوخت در حال استارت ندارد.
شرایط حرکت خودرو
در شرایط کارکرد عادی خودرو حرکت آن مقدار سوخت تزریقی وابسته به موقعیت پدال گاز (سنسور پدال گاز) و دور موتور محاسبه می‌شود. این حالت از طریق منحنی مشخصه برای رفتار حرکت اتفاق می‌افتد. خواسته راننده و توان خودرو به این ترتیب در بهترین حالت ممکن با یکدیگر تطبیق می‌یابند.
تنظیم دور آرام
در دور آرام موتور نقش اصلی را در مصرف سوخت، مقدار بازده خودرو و دور آرام موتور بازی می‌کنند. بخش قابل توجهی از مصرف سوخت خودروها در ترافیک فشرده خیابان‌ها به شرایط کارکرد موتور وابسته است. به همین دلیل یک دور موتور حتی‌الامکان پایین دارای مزیت است. ولی دور آرام باید چنان تنظیم گردد که دور آرام در همه شرایط (مثلاً هنگام روشن بودن سیستم برقی خودرو، یا روشن بودن تهویه مطبوع و غیره) خیلی افت کند، و یا حتی خاموش گردد.
برای تنظیم دور ایده‌آل آرام موتور تنظیم‌کننده با رگلاتور دور آرام مقدار سوخت را تا آنجا تغییر می‌دهد که دور موتور واقعی اندازه‌گیری شده درست با دور موتور ایده‌آل برابر شود. دور موتور ایده‌آل ویژگی‌های تنظیم توسط دنده در حال کار (در جعبه دنده اتوماتیک) و دمای موتور (سنسور مایع خنک‌کننده) تحت تاثیر قرار می‌گیرد.

 

به گشتاور خارجی، گشتاورهای مالشی درونی نیز اضافه می‌شوند که توسط کنترل دور آرام باید حذف شده و به تعادل برسند. آنها بسیار کم تغییر می‌‌کنند ولی دائماً در تمام طول عمر موتور متغیر هستند و به علاوه به شدت به دماوابسته هستند.

 


الگوریتم 2-2 محاسبه مراحل تزریق سوخت در ECU .
کنترل کارکرد آرام
به خاطر تلرانس‌های مکانیکی و تغییرات در طول مدت حرکت همه سیلندرهای موتور گشتاور یکسانی تولید نمی‌کنند. این موضوع به ویژه در دور آرام نمود بیشتری دارد و منجر به اصطلاحاً نامیزان کار کردن موتور می‌شوند. رگلاتور کارکرد آرام، تغییرات دور موتور را پس از هر احتراق دریافت کرده و آنها را با هم مقایسه می‌کند. مقدار سوخت برای هر سیلندر سپس با استفاده از تفاوت‌های دورها چنان تنظیم می‌شود که همه سیلندرها حتی‌الامکان یک مقدار مساوی گشتاور تحویل دهند.
کنترل سرعت حرکت خودرو
برای راندن اتومبیل با سرعت ثابت رگلاتور سرعت ثابت وارد عمل می‌شود. آن سرعت خودرو را روی مقدار خواسته شده ثابت نگاه می‌دارد. این مقدار می‌تواند به وسیله اهرم تنظیم گردد. مقدار سوخت تزریقی تا زمانی بالا و پایین می‌رود که سرعت اندازه‌گیری شده با سرعت ایده‌آل تنظیم شده برابر شود. اگر راننده در هنگام روشن بودن رگلاتور سرعت ثابت پدال کلاچ یا ترمز را بگیرد، فرآیند تنظیم خاموش می‌شود.
با گرفتن پدال گاز سرعت ایده‌آل را می‌توان بالا برد و شتاب گرفت. وقتی پدال گاز دوباره رها شود، کنترل‌کننده سرعت آخرین سرعت موجود را به کمک تنظیم مجدد اهرم خود تنظیم می‌کند. یک تغییر پله پله و مرحله‌ای سرعت ایده‌آل نیز از طریق اهرم، ممکن می‌باشد.
تنظیم مقدار تزریق
همیشه تزریق مقدار سوخت خواسته راننده و یا مقدار سوختی که به صورت فیزیکی ممکن باشد مجاز نیست. این مطلب می‌تواند دلایل زیر را داشته باشد:
- آلایندگی بیش از حد
- خروج بیش از حد دوده
- اضافه بار مکانیکی به خاطر وجود گشتاور بیش از حد و یا دور بیش از حد موتور
- حرارت اضافی به خاطر دمای مایع خنک‌کننده، روغن و یا توربور شارژر
حد تزریق سوخت به خاطر وجود کمیت‌های ورودی مختلف مانند مقدار هوای مکشی، دور و دمای مایع خنک‌کننده قرار داده می‌شود.
در صورت گرفتن ناگهانی و یا رها کردن ناگهانی پدال گاز نتیجه آن یک سرعت زیاد تغییر در مقدار تزریق سوخت است و به همراه آن همچنین گشتاور چرخشی است. موتور و قطعات متحرک به خاطر این تغییر بار ناگهانی ارتعاشات تولید می‌کنند که در تکان‌ها و تغییرات در دور موتور خود را نشان می‌دهند.
گزینه جذب فعال این تغییرات دوره‌ای در دور موتور را کاهش می‌دهد، به این طریق که مقدار سوخت تزریقی با دوره تناوب ارتعاش یکسان تغییر می‌کند، در هنگام افزایش دور کمتر شده و در هنگام کاهش دور افزایش می‌یابد. حرکت به این ترتیب تا حد زیادی جذب می‌شود.

 

a- بدون خفه کن موج فعال
b- با خفه کن موج فعال
1- عملکرد فیلتر
2- تصحیح فعال

 

 

 

 

 

نمودار 2-2 نمونه ای از خفه کن موج فعال (ARD) .

 

 

 



شکل 2-2 نمونه ای از کنترل مداوم آرام (LRR) .

 

تصحیح ارتفاع
به کمک سنسور فشار محیط، فشار اتمسفر می‌تواند توسط پردازنده دریافت گردد. فشار اتمسفر روی تنظیم فشار هوای ورودی سیلندر تاثیرگذار است و همچنین بر محدودیت گشتاور چرخشی مؤثر است. به این وسیله در ارتفاعات بالا مقدار سوخت پاشش کاهش می‌یابد و خروجی دود کاهش می‌یابد.
خاموشی سیلندر
اگر در دور موتورهای بالا یک گشتاور چرخشی پایین مدنظر باشد، باید سوخت خیلی کمی پاشیده شود. یک امکان دیگر به اصطلاح قطع سیلندر است. در این حال نصف انژکتورها قطع می‌شوند (UIS، UPS، CR) و انژکتورهای
باقیمانده به همین نسبت مقدار سوختشان بیشتر می‌شود. این مقدار می‌توان با دقت بیشتری تزریق شود.
به وسیله الگوریتم‌های مخصوص نرم‌افزاری تغییر حالت‌های ملایم یعنی بدون تغییر در گشتاور چرخشی در زمان روشن کردن و یا قطع کردن سیلندر به دست می‌آیند.

 

خاموش کردن موتور
اصول کاری خود احتراقی این نتیجه را دارد که موتور دیزل فقط به وسیله قطع تحویل سوخت به حالت خاموش در می‌آید. در کنترل الکترونیکی دیزل، موتور از طریق روند پردازنده تزریق صفر (عدم باز شدن شیر برقی) خاموش می‌شود.
تبادل اطلاعات
ارتباط بین پردازنده موتور و سایر پردازنده از طریق گذرگاه (Controller Area Network) CAN انجام می‌گیرد. به این طریق مقادیر ایده‌آل جهت نظارت بر خطاها و کارکرد خودروها که موردنیاز هستند و داده‌های مربوط به شرایط کارکرد و اطلاعات وضعیت منتقل می‌شوند.
مداخله خارجی در تنظیم مقدار سوخت تزریقی
در مداخله خارجی مقدار سوخت تزرقی توسط یک پردازنده بیرونی (مثلاً پردازنده سیستم ABS، ASR و...) تحت تاثیر قرار می‌گیرد. این پردازنده به پردازنده موتور اطلاع می‌دهد که تا چه مقدار گشتاور چرخشی موتور (و به همین ترتیب مقدار سوخت تزریقی) باید تغییر کند.
سیستم ضد سرقت الکترونیکی
برای امنیت خودرو در برابر سرقت به کمک یک پردازنده اضافی برای استفاده ضد سرقت می‌توان جلوی استارت خودرو را گرفت. راننده می‌تواند به این پردازنده مثلاً از طریق کنترل از راه دور علامت دهد که او مجاز به استفاده از خودرو می‌باشد. سپس در پردازنده موتور، ارسال سوخت باز می‌شود طوری که استارت موتور و حرکت خودرو امکان‌پذیر شود.

 

 

 


سیستم تهویه
برای اینکه در دماهای بالا محیط بیرونی یک دمای مطبوع در درون خودرو داشته باشیم، سیستم تهویه هوا را به کمک یک کمپرسور سرماساز خنک می‌کند.
نیاز آن به توان مکانیکی بسته به موتور و وضعیت حرکت خودرو 1 تا 30% توان موتور را در بر می‌گیرد. به محض اینکه راننده پدال گاز را به سرعت بگیرد (یعنی درخواست بیشتر گشتاور ممکن را کند)، کمپرسور سرماساز مدت کوتاهی توسط EDC خاموش می‌شود.
از این طریق توان موتور به طور کامل در اختیار قوه محرکه قرار می‌گیرد. این موضوع در دمای داخل اتاق تاثیر محسوسی ندارد.
پردازنده کنترل شمع پیش گرمکن
پردازنده شمع گرمکن (Preheating Glow Plug) برای کنترل شمع پیش‌گرمکن از پردازنده موتور اطلاعات
مربوط به زمان و مدتی که باید شمع سرخ شود دریافت می‌کند. پردازنده شمع پیش‌گرمکن بر فرآیند برافروخته شدن شمع نظارت می‌کند و ایرادها و مشکلات را به پردازنده موتور اعلام می‌کند تا در عملکرد عیب‌یابی مدنظر قرار گیرد.

 

2-5 انتقال اطلاعات به سیستم‌های دیگر
نگاهی به سیستم
کاربرد افزاینده سیستم‌های کنترل و هدایت الکترونیکی در خودروها مانند:
- کنترل الکترونیکی پمپ انژکتور و موتور
- کنترل جعبه دنده یا گیربکس
- سیستم ترمز ضد قفل ABS
- کنترل لغزش ASR
- کنترل حرکت و پایداری خودرو ESP
- کنترل گشتاور کششی موتور MSR
- کامپیوتر مرکزی و غیره
شبکه کردن این پردازنده‌های منفرد را می‌طلبد. تبادل اطلاعات بین سیستم‌ها تعداد سنسورها را کاهش داده و بهره هریک از سیستم‌ها را افزایش می‌دهد. رابطهایی که مخصوصاً و به صورت ویژه‌ برای کاربردهای خودرویی توسعه داده شده‌اند می‌توانند در دو بخش تقسیم‌بندی شوند:
- رابطهای سنتی
- رابطهای سریال مانند CAN
انتقال سنتی اطلاعات
انتقال سنتی اطلاعات در خودرو به این طریق شناخته می‌شود که هر سیگنال به یک سیم منفرد مربوط است. سیگنال‌های دودویی (باینری) می‌توانند فقط از طریق دو وضعیت، (1) (بالا) و یا (0) (پایین) (مثلاً کمپرسور تهویه خاموش یا روشن) منتقل شوند (کد باینری).
از طریق نسبت‌ها، کمیت‌های متغیر می‌توانند به صورت پیوسته منتقل شوند (مثلاً وضعیت سنسور پدال گاز). افزایش تبادل داده‌ها بین اجرای الکترونیکی در خودرو دیگر نمی‌تواند از طریق رابطهای معمولی انجام گیرد. پیچیدگی دسته سیم‌ها و اندازه کانکتورها امروزه فقط با مصرف بسیار زیاد و هزینه بسیار، قابل انجام است و خواسته‌ها از سیستم تبادل اطلاعات بین پردازنده‌ها نیز همچنان افزایش می‌یابد. در بعضی خودروها پردازنده‌ها با حدود 30 جزء تشکیل‌دهنده ارتباط دارند. این گستردگی و جامعیت با کابل‌کشی سنتی به شکل اقتصادی انجام‌پذیر نیست.

 

 

 



شکل 2-3 وضعیت معمولی انتقال اطلاعات.

 

انتقال داده‌ها به صورت CAN
مشکلات تعداد بسیار زیاد سیم‌ها در تبادل اطلاعات از طریق رابطهای معمولی می‌توانند با استفاده از سیستم‌های گذرگاه حل شوند. CAN یک سیستم گذرگاه است که به صورت ویژه برای خودروها طراحی شده است. داده‌ها به صورت سریال منتقل می‌شوند یعنی روی یک سیم اطلاعات پشت سر هم ارسال می‌گردند. وقتی که پردازنده‌های الکترونیکی یک رابط سیال CAN داشته باشند، می‌توانند داده‌ها را روی سیم‌های گذرگاه CAN ارسال و دریافت کنند.

 

 

 

 

 


حوزه‌های کاربرد
چهار حوزه کاربرد با خواسته‌های متفاوت برای CAN در خودرو وجود دارند:
استفاده از مولتی پلکس
استفاده از مولتی پلکس برای کاربرد کنترل و تنظیم اجزا در حوزه الکترونیک مربوط به راحتی سرنشینان و اتاق خودرو کاربرد دارد. مانند تنظیم تهویه مطبوع، قفل مرکزی و جابجایی و تنظیم صندلی‌ها. نرخ انتقال داده‌ها عموماً بین 10 کیلوبایت در ثانیه و 125 کیلوبایت در ثانیه هستند (CAN سرعت پایین).
کاربرد در ارتباط بی‌سیم و متحرک
در این کاربرد اجزایی مانند سیستم ناوبری، تلفنی یا سیستم صوتی با واحدهای نمایش و دسته کنترل با هم مرتبط می‌شوند. هدف این است که مسیرهای دستوری را تا حد امکان یکپارچه کرد. همچنین اطلاعات وضعیت را جمع‌بندی کرد تا انحراف راننده به حداقل برسد.
نرخ داده‌ها در این حوزه تا Kbit/s125 است: در این حالت انتقال مستقیم داده‌های صوتی و تصویری ممکن نیست.
کاربردهای عیب‌یابی
کاربردهای عیب‌یابی با استفاده از CAN این هدف را دارند که شبکه موجود را جهت عیب‌یابی پردازنده‌های متصل به کار ببرند. عیب‌یابی مرسوم امروزی از طریق کابل (ISO 9141) دیگر موردنیاز نیست. نرخ انتقال داده‌ها Kbit/s500 برنامه‌ریزی شده است.
کاربرد زمان واقعی یا همزمان (Real time)
این کاربردها که در آنها سیستم‌های الکتریکی مانند کنترل موتور، کنترل جعبه دنده و کنترل حرکت و پایداری خودرو (ESP) با یکدیگر شبکه می‌شوند، در خدمت تنظیم حرکت خودرو هستند.
ویژگی خاص آنها نرخ انتقال داده بین Kbit/s125 و Mbit/s 1 (CAN سرعت بالا برای انجام روش زمان واقعی) یا همزمان است. این قسمت به کاربردهای زمان واقعی اختصاص دارد.
جفت کردن پردازنده
در جفت کردن پردازنده‌ها سیستم‌های الکترونیکی مانند کنترل موتور، سیستم ضد قفل (ABS)، کنترل لغزش (ASR) و همچنین کنترل حرکت و پایداری خودرو (ESP)، کنترل الکترونیکی جعبه دنده و غیره از طریق رابط CAN با یکدیگر جفت می شوند. پردازنده‌ها در این حال به عنوان ایستگاه دارای شرایط یکسان از طریق ساختار گذرگاه خطی مرتبط هستند. این ساختار به نام Multi-Master شناخته می‌شوند. این سیستم دارای این مزیت است که سیستم باس در هنگام از کار افتادن یک ایستگاه برای سایر سیستم‌ها به طور کامل در دسترس است. در مقایسه با سایر چیدمان‌های لاجیک (منطقی) (مثل ساختار حلقه یا ستاره) در این حالت احتمال خرابی کل سیستم به شدت کاهش یافته است. در ساختارهای حلقه‌ای یا ستاره‌ای خرابی یکی از اعضاء و یا واحد مرکزی منجر به از کار افتادن کل سیستم می‌گردد.
نرخ‌های معمول در این سیستم بین حدود Kbit/s125 و Mbit/s1 قرار دارند. آنها باید آن قدر بالا باشند که رفتار زمان واقعی مورد انتظار تضمین شود. این یعنی اینکه مثلاً پردازنده موتور مقداری را که از بار موتور می‌خواند در چند میلی‌ثانیه به پردازنده جعبه دنده انتقال دهد.

شکل 13-4 وضعیت گذرگاه خطی اطلاعات.

 


آدرس‌دهی مربوط به محتوا
سیستم گذرگاه CAN تک‌تک ایستگاهها را آدرس‌دهی نمی‌کند، بلکه به هریک پیغام یک شناسه ثابت 11 بیتی (فرمت استاندارد برای خودروهای سواری) و یا 29 بیتی (فرمت گسترش یافته برای وسایل نقلیه سنگین) اختصاص می‌دهد. این شناسه محتوای پیام را مشخص می‌کند (مثلاً دور موتور). در یک پیام می‌توانند همچنین چند سیگنال با هم ارسال شوند (مثلاً وضعیت قرارگیری چند کلید).
یک ایستگاه، فقط داده‌هایی را استفاده می‌کند، که شناسنه متعلق به آن در فهرست پیام‌های قابل دریافتش وجود داشته باشند (آزمایش پذیرش پیام). از همه داده‌های دیگر به سادگی چشم‌پوشی می‌شود. این عملکرد می‌تواند توسط یک زیربنای ویژه CAN برآورده شود (Full-CAN) از طریق بار روی میکروکنترل کاهش می‌یابد. زیربنای اساسی CAN همه پیام‌ها را می‌بینند. سپس میکروکنترلر به محل‌های حافظه مهم دسترسی پیدا می‌کند.
آدرس‌دهی مربوط به محتوا این امکان را پدید می‌آورد که یک سیگنال به چندین ایستگاه ارسال شود، به این طریق که یک فرستنده سیگنال خود را مستقیماً و یا از طریق یک پردازنده روی شبکه گذرگاه ارسال می‌کند. آنجا سیگنال در دسترس همه گیرنده‌ها قرار دارد. به علاوه از آنجا که سیستم‌های بیشتری نیز به سیستم CAN موجود می‌توانند اضافه شوند، تعداد زیادی از انواع ابزارها می‌توانند اضافه شوند. در صورت که ECU یا پردازنده به اطلاعات بیشتری که در گذرگاه وجود دارند نیاز داشته باشد، تنها کاری که باید انجام دهد فراخوانی آن است.

 

ایستگاه 2 در حال فرستادن،
ایستگاه 1و4 در حال دریافت
داده ها

 

 

 

الگوریتم 2-3 آدرس دهی و فیلتر کردن پیام (بررسی دریافت).
ایستگاه 2 استفاده از اولین دریافت
(سیگنال در گذرگاه = سیگنال از
ایستگاه 2)
0- سطح تعادل
1- سطح مغلوب

 

 

 

نمودار 2-3 داوری رقم دودئی بوسیله رقم دودئی.

 

اولویت‌بندی
شناسه علاوه بر محتوای داده‌ها، همزمان اولویت پیام را در هنگام ارسال مشخص می‌کند. یک سیگنال که خیلی سریع‌ تغییر می‌کند (مثلاً دور موتور). باید به همان نسبت سریع‌تر ارسال شود به همین علت اولویت بالاتری را نسبت به سیگنالی که به نسبت کندتر تغییر می‌کند (مثلاً دمای موتور) دریافت می‌کند. در ادامه پیام‌ها براساس اهمیتشان نیز رتبه‌بندی می‌شوند (مثلاً عملکرد امنیت خودرو). پیام‌های دارای اولویت یکسان وجود ندارند.
توزیع گذرگاه بین پردازنده‌ها
وقتی که گذرگاه، آزاد و خالی است هر ایستگاه می‌تواند انتقال پیام‌ها را شروع کند. وقتی که چند ایستگاه همزمان شروع به ارسال کنند، در این صورت پیام دارای اولویت بالاتر تقدم می‌یابد، بدون اینکه اتلاف وقت یا داده‌ها به وجود آید (پروتکل بدون خرابی). این موضوع با استفاده از مفهوم بیت در حال استراحت (عدد منطقی 1) و حاکم (عدد منطقی 0)، که در آن پیام‌های حاکم یا مسلط بر پیام‌های دیگر غلبه دارند. فرستنده‌ها با پیام‌های با اولویت کمتر، به طور خودکار گیرنده می‌شوند و فرستادن پیام خود را به محض آزاد شدن مجدد گذرگاه تکرار می‌کنند. برای آنکه همه پیغام‌ها موقعیت ورود به گذرگاه را داشته باشند، سرعت باس باید با تعداد

 

ایستگاههای متناسب باشد. یک زمان سیکل باری سیگنال‌هایی که دائماً در حال تغییر هستند تعریف می‌شود (مثل

دانلود با لینک مستقیم


دانلود مقاله گزارش کاراموزی رشته الکترونیک - کنترل الکترونیکی موتور دیزل