لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 58
چکیده
هدف از این تحقیق بررسی خصوصیات اصلی و رفتار فرآیندهای شاخه ای گالتون- واتسون دو جنسی با تابع خانوادة زیر جمعی و احتمالات انقراض در چنین فرآیندهایی است.
مدلی از فرآیند شاخه ای دو جنسی مفروض است به طوری که توزیع زاد و ولد به اندازه جمعیت بستگی دارد. همچنین حالت خاص را در نظر می گیریم که در آن نرخ رشد جمعیت (میانگین توزیع زاد و ولد)، وقتی به میل می کند .
برای این نوع از فرآیندهای شاخه ای گالتون- واتسون دوجنسی شرط لازم برای همگرایی فرآیند در و ارائه می گردد.
همچنین شرط کافی برای همگرائی در به دست خواهد آمد.
مقدمه
تا کنون مطالعات زیادی روی نحوه رشد جمعیت و احتمال انقراض در فرآیندهای شاخه ای گالتون- واتسون استاندارد انجام شده است. در حالت دوجنسی (که مدل مناسبی برای جامعة انسانی است) تعمیم این قضایا لازم به نظر می رسد. زمانی که ما چگونگی رشد جمعیت را بدانیم، می توانیم زمان انقراض رفتار مجانبی رشد جامعه را بررسی کنیم و مدل مناسبی برای آن بدست آوریم.
فرآیندهای شاخه ای گالتون-واتسون دو جنسی اولین بار توسط دالی در سال 1968 و پس از آن توسط آسمونس در سال 1980 تعریف و بررسی شد. دالی نشان داد که فرآیند شاخه ای گالتون- واتسون دو جنسی یک زنجیر مارکوف با ماتریس احتمال تغییر وضعیت یک مرحله ای با فضای حالت صحیح و نامنفی است.
در نظریه فرآیندهای شاخه ای گالتون- واتسون استاندارد می دانیم که فرآیند با احتمال 1 منقرض می شود اگر و فقط اگر میانگین تولید مثل برای هر فرد دلخواه کمتر از 1 باشد.
حال ما می خواهیم بدانیم «آیا قوانین متشابهی برای احتمالات انقراض در فرآیندهای شاخه ای گالتون- واتسون دو جنسی وجود دارد؟»
در سال 1968 دالی یک شرط لازم و کافی برای احتمال انقراض 1 برای فرآیندهای با توابع خانوادة خاص به دست آورد.
هدف از این تحقیق معرفی فرآیندهای شاخه ای گالتون- واتسون دوجنسی و فرآیند زوجهای هم خانواده و بیان ویژگی های آنها و مقایسه احتمالات انقراض در چنین فرآیندهایی است ابتدا شروط انقراض
تحقیق درباره بررسی خواص مقدماتی و رفتار فرایندهای شاخه ای گالتون واتسون