لینک پرداخت و دانلود در "پایین مطلب"
فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:93
2-1- حلقه و ایده آل :
تعریف : حلقه مجموعه ای است مانند R همراه با دو عمل دوتایی که معمولا با جمع و ضرب نشان می دهند به طوری که :
1 . ( R , + ) گروه آبلی است .
2 . به ازای هر R α , b , c (α b ) c = α ( b c ) . ( شرکت پذیر )
3 . . (α + b ) c = α c + b c , α ( b + c ) = α b + α c ( پخشی )
هرگاه علاوه بر این :
4 . اگر به ازای هر R α , b α b = b α گوییم حلقه تعویض پذیر است .
5 . هرگاه R شامل عنصری مانند 1 R باشد بطوری که : به ازای هر R α 1R . α = α . 1R = α آنگاه گوییم R یک حلقه تعویض پذیر یک دار است .
نکته : عنصر همانی جمعی حلقه عنصر صفر نام دارد و با 0 نمایش داده می شود .
تعریف : فرض کنید S , R حلقه و R → S : f یک نگاشت باشد در این صورت f را همومورفیسم ( یا همومورفیسم حلقه ای ) گوییم اگر و فقط اگر شرط های زیر برقرار باشند:
مقاله درباره حلقه و ایده آل