فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله اعداد کاربردی

اختصاصی از فایل هلپ مقاله اعداد کاربردی دانلود با لینک مستقیم و پر سرعت .

مقاله اعداد کاربردی


مقاله اعداد کاربردی

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات 18

تاریخچه عدد

یک عدد یک ماهیت مجرد است که برای توصیف کمیت استفاده می شود. انواع مختلفی از اعداد وجود دارد. مشهورترین اعداد، اعداد طبیعی {... ،3 ،2 ،1} هستند که برای شمارش بکار رفته و با N، و اگر عدد صفر را نیز در بر داشته باشد اعداد حسابی {... ،3 ،2 ،1 ،0} و با I مشخص می شوند. اگر تمام اعداد منفی را شامل شود، اعداد صحیح Z بدست می آید. نسبت اعداد صحیح اعداد گویا یا کسر نام دارند؛ دسته کامل تمام اعداد گویا با Q نشان داده می شود. اگر تمام عبارتهایی که اعشار آنها غیر تکراری و نامحدود است را نیز شامل کنیم، اعداد حقیقی R بدست می آیند. اعداد حقیقی که گویا نیستند اعداد گنگ نامیده می شوند. اعداد حقیقی بنوبه خود به اعداد مختلط C تعمیم می یابند تا بتوان معادلات جبری را حل نمود. علامتهای فوق اغلب با حروف "ضخیم تاکید" نوشته می شوند، بنابراین:

 
اعداد مختلط بنوبه خود به quaternion تعمیم می یابند، ولی ضرب quaternion ها خاصیت جابجایی ندارد. Octonion ها از تعمیم quaternion ها بدست می آیند، ولی این بار خاصیت شرکت پذیری را از دست میرود. در حقیقت، تنها شرکت پذیران ابعاد محدود جبر تقسیم اعداد حقیقی، مختلط و quaternion هستند. اعداد باید از رقوم که علامتهایی برای نمایش اعداد هستند، متمایز شوند. علامت گذاری اعداد بصورت سریهایی از ارقام در سیستمهای رقومی بحث شده است. مردم دوست دارند تا اعداد را بجای اسامی یکتا به اشیاء بدهند. طرحهای رقومی متنوعی برای اینکار وجود دارند.

تعمیم

اعداد فوق حقیقی و فرا حقیقی پیشرفتهای جدید می باشند که اعداد حقیقی را با اضافه کردن اعداد بزرگ نامحدود و بینهایت کوچک توسعه می دهند. در حالیکه (بیشترین) اعداد حقیقی بسط های طولانی نامحدود در سمت راست نقطه اعشار دارند، میتوان اجازه داد تا برای بسط های طولانی نامحدود در سمت چپ نیز تلاش نمود، که به اعداد p-adic منجر گردید. برای بحث درباره مجموعه های نامحدود، اعداد طبیعی به اعداد اوردینالی و به اعداد کاردینالی تعمیم داده شده اند. اولی ترتیب مجموعه و دیگری اندازه آنرا بیان می کنند. (برای حالت محدود، اعدا اوردینالی و کاردینالی یکسان هستند: آنها در حالت نامحدود باهم اختلاف پیدا می کنند.)
عملکردهای حساب در مورد اعداد، مانند جمع، تفریق، ضرب و تقسیم، در شاخه ریاضیات تعمیم یافته و بنام جبر مجرد مشهور است؛ برای کسب اطلاعات بیشتر به گروهها، حلقهها و میادین رجوع کنید.


دانلود با لینک مستقیم


مقاله اعداد کاربردی

تحقیق درباره بررسی اعداد کاربردی

اختصاصی از فایل هلپ تحقیق درباره بررسی اعداد کاربردی دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره بررسی اعداد کاربردی


تحقیق درباره بررسی اعداد کاربردی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه18

 

بخشی از فهرست مطالب

تاریخچه عدد

 

عدد پی

 

عدد نپر

 

عدد طلائی

 

منابع

 

تاریخچه عدد

 

 

 

یک عدد یک ماهیت مجرد است که برای توصیف کمیت استفاده می شود. انواع مختلفی از اعداد وجود دارد. مشهورترین اعداد، اعداد طبیعی {... ،3 ،2 ،1} هستند که برای شمارش بکار رفته و با N، و اگر عدد صفر را نیز در بر داشته باشد اعداد حسابی {... ،3 ،2 ،1 ،0} و با I مشخص می شوند. اگر تمام اعداد منفی را شامل شود، اعداد صحیح Z بدست می آید. نسبت اعداد صحیح اعداد گویا یا کسر نام دارند؛ دسته کامل تمام اعداد گویا با Q نشان داده می شود. اگر تمام عبارتهایی که اعشار آنها غیر تکراری و نامحدود است را نیز شامل کنیم، اعداد حقیقی R بدست می آیند. اعداد حقیقی که گویا نیستند اعداد گنگ نامیده می شوند. اعداد حقیقی بنوبه خود به اعداد مختلط C تعمیم می یابند تا بتوان معادلات جبری را حل نمود. علامتهای فوق اغلب با حروف "ضخیم تاکید" نوشته می شوند، بنابراین:

 
اعداد مختلط بنوبه خود به quaternion تعمیم می یابند، ولی ضرب quaternion ها خاصیت جابجایی ندارد. Octonion ها از تعمیم quaternion ها بدست می آیند، ولی این بار خاصیت شرکت پذیری را از دست میرود. در حقیقت، تنها شرکت پذیران ابعاد محدود جبر تقسیم اعداد حقیقی، مختلط و quaternion هستند. اعداد باید از رقوم که علامتهایی برای نمایش اعداد هستند، متمایز شوند. علامت گذاری اعداد بصورت سریهایی از ارقام در سیستمهای رقومی بحث شده است. مردم دوست دارند تا اعداد را بجای اسامی یکتا به اشیاء بدهند. طرحهای رقومی متنوعی برای اینکار وجود دارند.

تعمیم

اعداد فوق حقیقی و فرا حقیقی پیشرفتهای جدید می باشند که اعداد حقیقی را با اضافه کردن اعداد بزرگ نامحدود و بینهایت کوچک توسعه می دهند. در حالیکه (بیشترین) اعداد حقیقی بسط های طولانی نامحدود در سمت راست نقطه اعشار دارند، میتوان اجازه داد تا برای بسط های طولانی نامحدود در سمت چپ نیز تلاش نمود، که به اعداد p-adic منجر گردید. برای بحث درباره مجموعه های نامحدود، اعداد طبیعی به اعداد اوردینالی و به اعداد کاردینالی تعمیم داده شده اند. اولی ترتیب مجموعه و دیگری اندازه آنرا بیان می کنند. (برای حالت محدود، اعدا اوردینالی و کاردینالی یکسان هستند: آنها در حالت نامحدود باهم اختلاف پیدا می کنند.)
عملکردهای حساب در مورد اعداد، مانند جمع، تفریق، ضرب و تقسیم، در شاخه ریاضیات تعمیم یافته و بنام جبر مجرد مشهور است؛ برای کسب اطلاعات بیشتر به گروهها، حلقهها و میادین رجوع کنید
.

 


دانلود با لینک مستقیم


تحقیق درباره بررسی اعداد کاربردی