فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد بهبود در تصاویر فشرده شده 13 ص

اختصاصی از فایل هلپ تحقیق درمورد بهبود در تصاویر فشرده شده 13 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

دانشگاه آزاد اسلامی‌واحد مشهد

دانشکده فنی و مهندسی

گروه هوش مصنوعی

بهبود در تصاویر فشرده شده

Compressed image Enhancement

تهیه کننده

سید عبدالحمید اصفهانی

Email

Hamid_com_81@yahoo.com

استاد درس:

دکتر پور رضا

تیر87

1.چکیده

در این مقاله ما روشهایی که در حوزه فشرده سازی ،تصاویر JPEG را بهبود می دهند را مورد بررسی قرار می دهیم بدون این که تصاویر فشرده شده را به طور کامل رمز گشایی کنیم روش اولی که مورد بررسی قرار می دهیم استفاده از یک تابع فازی جهت بهبود تصویر است در این روش ابتدا تابع بهبود را به حوزه فشرده سازی می بریم برای این کار ما نیاز به پیاده سازی عملگر های غیر خطی در حوزه فشرده سازی داریم پس از پیاده سازی این تابع را بر بلاک های 8*8 اعمال می کنیم و نتایج این تابع را بر روی بلاکها یکنواخت وبلاکهای دارای جزییات بررسی میکنیم و در پایان اتلگوریتم را برای بلاک ها متفاوت بهبود می دهیم . در روش دوم ابتدا مقدار کنسترانت تصویر را اندازه گیری کرده و سپس کنسترانت ضرایب را با یک مقدار ثابت بهبود می دهیم

2.مقدمه

امروزه حجم بالا تصاویر باعث شده است تا تصاویر فشرده شده مورد توجه بیشتری قرار گیرد فشرده سازی تصاویر با نگهداشتن کیفیت نسبی تصاویر حجم تصاویر را تا حد زیادی پایین می آورد . حجم پایین تصاویر در جایی که می خواهیم انتقال اطلاعات داشته باشیم بسیار مفید است . برای مثال می توان به انتقال تصاویر پزشکی از طریق اینترنت اشاره کرد

الگوریتم هایی که برای فشرده سازی تصاویر به کار می رود به دو گروه lossy ,lossless تقسیم می شوددر روش lossless اطلاعات تصویر از بین نمی رود و می توان با استفاده از تصویر فشرده شده و با استفاده از یک الگوریتم کدگشایی تصویر اولیه را بدست آورد ولی در روش های lossy مقداری از اطلاعات تصویر از بین می رود [2]

یکی از الگوریتم های معروف و پر کاربرد در فشرده سازی تصاویر الگوریتم فشرده سازی (JPEG) است در این روش ابتدا تصویر به قطعات 8*8 که همپوشانی ندارند تقسیم شده سپس ماتریس DCT را بر روی هر بلاک اعمال می کنیم ضرایب DCT را با استفاده از جدول مقدار دهی (Quantize Table) به یک مقدار گسسته مقدار دهی می کنیم این پردازش یک پردازش لوسی (lossy process) است و مقداری از اطلاعات را از دست می دهیم در این مرحله بسیاری از ضرایب کوچک (معمولاً قرکانس بالا) به مقدار صفر مقدار دهی می شوند حال این ضراین را با استفاده از یک الگوریتم کد گذاری کدگذاری می کنیم این عمل باعث پایین آمدن نسبت بیتی (bit rate) تصویر می شود [5]

 

الگوریتم هایی که برای بهبود تصویر فشرده شده ارائه شده اند بر اساس زمان بهبود تصویر می توان به 3 دسته کلی تقسیم کرد :1- بهبود تصویر قبل از فشرده سازی 2- بهبود تصویر بعد از فشرده سازی 3- بهبود تصویردر حین فشرده سا زی[4]

یکی از معایب بزرگ الگوریتم ها دسته اول (بهبود قبل از فشرده سازی ) پایین آمدن قدرت و ضریب فشرده سازی تصویر پس از اعمال الگوریتم بهبود است الگوریتم هایی که در اینجا مورد بررسی قرار می دهیم از الگوریتم های دسته 2و3 است

3.روشهای بکار رفته برای بهبود تصاویر فشرده شده (JPEG)

یک تصویر فشرده شده به دو روش می توان بهبود بخشید در روش اول تصویر کاملاً رمز گشایی کرده و به حوزه پیکسلی می بریم و سپس تصویر بهبود یافته را با الگوریتم فشرده سازی مجدد فشرده می کنیم این امر (compress/decompress) باعث زمانبر شدن الگوریتم می شود علاوه بر این قدرت و ضریب فشرده سازی در تصاویر بهبود یافته در حوزه پیکسلی کم می شود.

روش دیگر برای بهبود تصاویر فشرده شده استفاده از ضرایب DCT تصویر است در این روش ما ابتدا ضرایب را با یک الگوریتم کدگشایی از تصویر بدست می آوریم سپس پردازش را در حوزه فشرده شده (Compressed Domain) بر روی تصویر اعمال کرده و سپس ضرایب را کد گذاری می کنیم در این روش ما زمان لازم برای (compress/decompress) را صرفه جویی می کنیم در این روش بدلیل این که بسیاری از ضرایب پس از عمل (Quantize) صفر می شوند محاسبات کمتری نسبت به حوزه پیکسلی خواهیم داشت

 

دو روش جهت بهبود تصاویر فشرده شده

1-3.استفاده از تابع فازی INT برای بهبود کنتراست تصویر

تابع فازی (INT-OP) بر اساس حد آستانه عمومی کنتراست تصویر را بهبود می دهد برای اعمال این تابع در حوزه پیکسلی ابتدا نیاز است تا سطوح خاکستری تصویر را در بازه [0 1] نرمال می کنیم

 

این تابع نقاطی که روشنایی کمتری دارد را تاریک تر می کند و نقاطی که روشنایی بیشتری را دارد را روشن تر می کند این تابع باعث می شود تا سطوح خاکستری ابتدا و انتها بازه فشرده شده و در عوض فاصله سطوح خاکستری میانی را افزایش می دهد که این موجب بالا رفتن کنسترانت تصویر می شود. این تابع یک تابع غیر خطی است

 


دانلود با لینک مستقیم


تحقیق درمورد بهبود در تصاویر فشرده شده 13 ص

تصاویر در مهندسی پزشکی

اختصاصی از فایل هلپ تصاویر در مهندسی پزشکی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

خلاصه :

ناحیه بندی تصویر در مورد تصاویر تشدید مغناطیسی (MRI ) کمک بسیاری در تحلیل این تصاویر به پزشکان می کند ، ولی متاسفانه تصاویر MRI همواره همراه با نویز شدید ناشی از عملکرد اپراتور ، عملکرد دستگاه و یا نویز محیطی می باشند که باعث کاهش دقت در ناحیه بندی می شود .

یکی از روشهایی که در مورد ناحیه بندی بسیار استفاده می شود روش fuzzy c-means (fcm ) است که نسبت به نویز پایداری از خود نشان نمی دهد ، در این مقاله سعی در بهبود عملکرد FCM با استفاده از معیار نزدیکی پیکسل ها به هم ( همسایگی آنها ) و همچنین میزان شباهت ویژگی ها به هم ( میزان شباهت کنتراست ) می باشیم ، به این منظور دو ضریب ( و در تابع هزینه مربوطه به FCM تعریف کرده و با استفاده از الگوریتم ژنتیک سعی در پیدا کردن مقدار بهینه آنها خواهیم بود .

مقدمه :

امروزه یکی از کاربردهای پردازش تصاویر در مهندسی پزشکی ، تحلیل تصاویر پزشکی توسط کامپیوتر و تشخیص بیماری یا سلامت به طور هوشمند توسط کامپیوتر می باشد ، به منظور تحلیل هر چه بهتر این تصاویر نیاز به ناحیه بندی در تصاویر داریم و در واقع با ناحیه بندی تصاویر کار سیستم هوشمند را دقیق تر می کنیم و مشخص می کنیم که در هر ناحیه باید به دنبال چه چیزی باشد ، اما ناحیه بندی تصویر با توجه به طبیعت تصاویر پزشکی و اثرات نویز کاری دشوار می باشد .

تصویر برداری MRZ یکی از راههای تشخیص موارد معیوب و یا دچار مشکل در اندامهای مختلف است و در واقع MRZ تصاویر با رزولوشن بالا از اندامهای مختلف در اختیار ما می گذارد و به علت استفاده فراوان از این روش در تصویر برداری های پزشکی، امروزه تلاش زیادی در بهبود این تصاویر و به خصوص ناحیه بندی آنها انجام می شود.

روشهای مختلفی به منظور ناحیه بندی این تصاویر پیشنهاد شده اند مانند روشهای آستانه گذاری، توسعه یک ناحیه و روشهای کلاسترینگ روشهای آستانه گذاری به علت ساختار پیچیدۀ مغز بسیار پیچیده بوده و روشهای توسعه یک ناحیه هم دارای محدودیت های خاص خود می باشد. روشی که برای ناحیه بندی بسیار استفاده می شود روشهای کلاسترینگ مبتنی بر FMC می باشند.

مطالعات و شبیه سازیها نشان داده است که روش FCM در مورد تصاویر مغز نرمال عملکرد خوبی از خود نشان می دهد ولی در مورد مغزهای معیوب و دارای تومور عملکرد خوبی ندارد در واقع بزرگترین مشکل هم FCM حساسیت بسیار بالای آن نسبت به نویز می باشد و از آنجا که تصاویر پزشکی همواره همراه با نویز هستند میزان صعت عملکرد FCM کاهش می یابد.

روشی که در اینجا به منظور افزایش پایداری نسبت به نویز مطرح می شود استفاده از دو فاکتور اساسی در ناحیه بندی می باشد. فاکتور اول تفاوت ویژگی ها در پیکسل های همسایه و فاکتور دوم وابستگی مکانی پیکسل های همسایه است، پس در این حالت عمل ناحیه بندی تنها به ویژگی خود پیکسل وابستگی ندارد، بلکه به


دانلود با لینک مستقیم


تصاویر در مهندسی پزشکی

تحقیق و بررسی در مورد روش های ذخیره سازی تصاویر 24 ص

اختصاصی از فایل هلپ تحقیق و بررسی در مورد روش های ذخیره سازی تصاویر 24 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

روش های ذخیره سازی تصاویر

ذخیره تصویر از Clipboard در فایل به کمک سی شارپ

همان طوری که می دانید Clipboard مجموعه ای از توابع و پیام هاست که به برنامه ها اجازه نقل و انتقال داده را می دهد، چون همه برنامه ها به Clipboard دسترسی دارند انتقال اطلاعات بین چند برنامه یا یک برنامه خاص به سادگی صورت می گیرد. این یادداشت توضیح می دهد که داده های Clipboard را چگونه به کمک سی شارپ مدیریت و در فایل ذخیره کنیم.

در این نوشته من از کلاس System.Windows.Forms.Clipboard استفاده خواهم کرد.این کلاس متدهایی برای قرار دادن و بازیابی اطلاعات موجود در Clipboard برای ما فراهم می کند.تمام متدهای فراهم شده توسط این کلاس استاتیک هستند به این معنی که برای استفاده از آن ها نیازی ندارید که یک شی از این کلاس بسازید.

و اما کد برنامه

کد:

if (Clipboard.GetDataObject() != null)

{

IDataObject data = Clipboard.GetDataObject();

if (data.GetDataPresent(DataFormats.Bitmap))

{

Image image = (Image)data.GetData(DataFormats.Bitmap,true);

image.Save("image.bmp",System.Drawing.Imaging.ImageFormat.Bmp);

image.Save("image.jpg",System.Drawing.Imaging.ImageFormat.Jpeg);

image.Save("image.gif",System.Drawing.Imaging.ImageFormat.Gif);

}

else

{

MessageBox.Show("The Data In Clipboard is not as image format");

}

}

else

{

MessageBox.Show("The Clipboard was empty");

}

حالا توضیح برنامه :

- متد GetDataObject() اطلاعاتی که درون Clipboard هست را نشان می دهد بنابراین می توانیم از آن برای گرفتن داده های درون Clipboard یا چک کردن وجود داده در آن استفاده کنیم.- چون داده هایی که درون Clipboard قرار می گیرند از انواع داده ای مختلفی هستند این متد یک داده از نوع IDataObject برمی گرداند بنابراین من یک شی از نوع اینترفیس IDataObject ساختم و آن را بوسیله مقدار بازگشتی از تابع etDataObject() مقدار دهی اولیه کردم:

IDataObject data = Clipboard.GetDataObject();

- بعد از این ما می توانیم شی data را برای مدیریت اطلاعاتی که از GetDataObject() یا Clipboard می آیند استفاده کنیم.- حالا نوع این داده که در شی data قرار گرفته است را بررسی می کنیم:

if (data.GetDataPresent(DataFormats.Bitmap))

یا آن را به یک فرمت مناسب مثل فرمت تصویری تبدیل می کنیم :

Image image = (Image)data.GetData(DataFormats.Bitmap,true);

اگر فرمت داده ما ماهیت تصویری نداشته باشد این مطلب را به کمک یک Message Box به کاربر اعلام می کنیم:

MessageBox.Show("The Data In Clipboard is not as image format");

توضیح: منبع این مطلب ، سایت C# Help بود. برای دریافت سورس این برنامه می توانید

ذخیره تصویر کاربران یاهو مسنجر

در صورتی که از کاربران یاهو مسنجر باشید، حتما با Avatar یا عکسی که به هنگام چت کردن در کنار ID افراد نمایش داده می شود، آشنا هستید. شما با این ابزار که از یاهو مسنجر 7 افزوده


دانلود با لینک مستقیم


تحقیق و بررسی در مورد روش های ذخیره سازی تصاویر 24 ص