فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله ساخت و بهره برداری ازیک سیستم سرمایش جذبی

اختصاصی از فایل هلپ مقاله ساخت و بهره برداری ازیک سیستم سرمایش جذبی دانلود با لینک مستقیم و پر سرعت .

مقاله ساخت و بهره برداری ازیک سیستم سرمایش جذبی


مقاله ساخت و بهره برداری ازیک  سیستم سرمایش جذبی

این محصول در قالب ورد و قابل ویرایش در 130 صفحه می باشد.

-1- ماشین جذبی و کاربردهای آن

در سال 1777 یعنی بیش از 200 سال پیش یک فرانسوی به نام «نایرن» (Nairne)تئوری تبرید جذبی را ارائه کرد. در سال 1860 اولین چیلر جذبی که با آمونیاک و آب کار می کرد ساخته شد. در سال 1945 اولین چیلر جذبی به وسیله کمپانی «کریر» به فروش رسید. چیلر جذبی سرگذشتی طولانی دارد، اما در دنیا چندان نام آور نیست. شاید درک این مطلب که ماشینی بتواند با استفاده از بخار آب یا سوختن سوخت آب سرد تولید کند کمی مشکل باشد! [1] اما هم اکنون در دنیا به دلیل استفاده از منابع جدید انرژی (گاز، نور خورشید و …) استفاده ناچیز انرژی برق و عدم استفاده از مبردهای مخرب لایه ازن به این ماشین توجه خاصی شده است.

1-1-1- مفاهیم و اصول (1)

تئوری ماشین جذبی از مفهوم «افزایش نقطه جوش»
 (Boiling point increase)گرفته شده است. زمانی که یک مول از محلولی با یک لیتر آب مخلوط شود نقطه جوش در حدود   افزایش می یابد. آب خالص در شرایط استاندارد در  می جوشد، اما وقتی که چند مول از محلولی به آب افزوده شود نقطه جوش آن چند درجه زیاد خواهد شد. این مطلب که در دبیرستان آموزش داده شده برای چیلر جذبی مورد استفاده قرار گرفته است.

 تولید آب سردشده: زمانی که یک خشک کننده (desiccant) در محفظه خالی از هوا وجود دارد، بخار آب موجود در محفظه به وسیله آن جذب خواهد شد. فشار این محفظه ممکن است تقریبا در حد خلاء با دمایی حدود  باشد چرا که مقدار بخار آب بسیار کم است. (شکل 1-1)

 

 

 

 

 

 

 

شکل(1-1)

 اگر این محفظه به محفظه دیگری که حاوی آب خالص است و از راه یک شیر متصل شود، فشار محفظه جدید باید در حدود 0.1 بار مطلق (Absolute bar) و دمای آن در حدود  باشد. میان آب خالص و مایع خشک کننده اختلاف فشار بخار بسیار زیادی وجود دارد. زمانی که شیر باز شود بخار آب موجود در آب که محفظه خود را پرکرده است، باید به محفظه خشک کننده برود. در این زمان این مقدار زیاد بخار آب، فرایند کاهش فشار زیادی را با حرکت به محفظه خشک کننده می گذارند و مقداری از آب هم بخار خواهد شد و خود را خنک خواهد کرد.  (شکل 2-1)

 

 

 

 

شکل(2-1)

اگر لوله های آب سرد در محفظه آب خالص نصب شوند، آب در لوله ها سرد یا خنک می شود و این آب خنک می تواند برای تهویه مطبوع با فرایند سرد کردن مورد استفاده قرار گیرد.

تغلیظ دوباره: (Reconcentration) هنگامی که بخار آب اضافی که توسط مایع خشک کننده جذب می شود فرایند جذب شدن را آهسته کرده یا متوقف می سازد, فرایند سرد کردن هم پایان می پذیرد. سپس مایع خشک کننده اشباع با گرمایش توسط بخار یا سوختن گاز دوباره تغلیظ می شود. (شکل 3-1)

 

 

 

 

 

 

شکل (3-1)

بنابراین مبرد جذب شده به وسیله چنین حرارتی بخار می شود، در حالی که مایع خشک کننده دوباره غلیظ خواهد شد. بخار آب در محفظه خشک کن به وسیله آب خنک کن، سرد می شود و دوباره به صورت مایع در می آید. (شکل 4-1)

شکل (4-1)

به هر حال خشک کننده به صورت جامد به آسانی به محفظه دیگر منتقل نمی‌شود و به این علت از یک خشک کننده یا جاذب (Absorbent) مایع برای چیلرهای جذبی واقعی استفاده می شود.

2-1-1- فرایندهای ترمودینامیکی درسیکل تبرید جذبی (3)

معمولی ترین فرایندهای ترمودینامیکی که در تبرید جذبی و سیستم های صنعتی جذبی اتفاق می افتند، در اینجا تشریح می شوند. این فرایندها: مخلوط شدن آدیاباتیک و غیر آدیاباتیک دو جریان گرمایش  وسرمایش شامل تقطیر و تبخیر و فرایند خفگی هستند.

مخلوط شدن آدیاباتیک دو جریان: شکل (5-1) مخلوط شدن را نشان می دهد که دو جریان دوتایی با غلظت و انتالپی مختلف در یک فرایند جریان دائم مخلوط می شوند. تعیین حالت جریان خروجی از محفظه مستلزم برقراری تعادل جرم و انرژی در حجم معیاری است که توسط محفظه اختلاط تعریف می شود.

شکل (5-1): فرایند مخلوط شدن جریان دائم و آدیاباتیک

تعادل انرژی: (1-1)                             

تعادل جرم: (2-1)                              

و تعادل جرم برای یک جزء: (3-1)                     

با حذف  از معادله های (1-1) و (2-1):  

معادله (4-1) خط مستقیمی را روی نمودار h-x تعریف می کند، همانطور که در شکل(5-1) نشان داده شده است، حالت 3 باید روی این خط قرار داشته باشد. می‌توان نشان داد که:

(5-1)                                 

(6-1)                                 

می توان از نمودار h-x برای حل مسائل مخلوط شدن استفاده کرد. اما این روش هنگامی که حالت نهایی در ناحیه مخلوط قرار داشته باشد کمی پیچیده است.

 - مخلوط شدن دو جریان با انتقال حرارت: این نوع فرایند کاملا متداول است و در محفظه جاذب ماشین تبرید جذبی اتفاق می افتد. در این حالت که در شکل (6-1) نمایش داده شده تعادل انرژی تبدیل می‌شود به:

(7-1)                              

و معادله های تعادل جرم همان معادله های مخلوط شدن آدیاباتیک هستند:

(8-1)                                           

(9-1)                                  

 

 

 

 

 

 

 

شکل (6-1) مخلوط شدن دائم دو جریان با انتقال حرارت

معادله برای غلظت  همان معادله (5-1) است در حالی که معادله آنتالپی  به صورت زیردر می آید:

(10-1)                           

معادله (10-1) با معادله (6-1) تنها در جمله آخر تفاوت دارد. نمایش این مطلب را روی نمودار h-x در شکل (6-1) می بینید. نقطه ‘3 بیانگر حالتی است که در مخلوط شدن آدیاباتیک اتفاق می افتد. نقطه 3 در فاصله مستقیم  زیرنقطه ‘3 قرار دارد. چرا که  و گرما دفع شده است. اگر گرما افزوده شود نقطه 3 بالاتر از نقطه ‘3 قرار خواهد گرفت (ژنراتور ماشین جذبی)

 

 

 

 

 

 

 

 

 

 

 

       

 

 

شکل (7-1): فرایند خفگی برای مخلوط مایع دوتایی تحت شرایط جریان دائم

- فرایندهای گرمایش و سرمایش: تبخیر و تقطیر تنها در سیکل جذبی اتفاق می افتد و به سادگی قابل بررسی ترمودینامیکی هستند. لذا از توضیح در این باره خودداری می‌شود.

 - فرایند خفگی: فرایند خفگی در بیشتر سیکل های تبرید روی می دهد. یک شیر خفانشی به طور شماتیک در شکل (7-1) نمایش داده شده است. با اینکه تبخیر در فرایند خفگی صورت می گیرد و دمای مخلوط تغییر می کند، تعادل انرژی  را نتیجه می دهد و غلظت ثابت می ماند x2=x1 نقاط حالت (1) و (2) روی نمودار h-x متشابه اند. اما باید یادآوری شود که حالت (1) در فشار P1 و حالت (2) در فشار P2 هستند. خط  توسط سعی و خطا و با استفاده از حرکت دادن یک خط راست و خط ایجاد تعادل رسم شده است. دمای  عموما کمتر از است و نسبت جزیی مایع و بخار توسط نسبت تصویرهای اجزای خط  تعیین خواهد شد.

3-1-1- فشارهای بالا و پایین ماشین (4)

فشار بالای ماشین را شرایط سیال تقطیرکننده(Condensing medium) و فشار پایین را شرایط مبرد تعیین می کند. برای دست یافتن به بیشترین کارایی سیستم، اختلاف فشار میان سمت فشار بالا و فشار پایین تا حد امکان کوچک نگه داشته شود.

4-1-1- یک قرارداد (5)

کمیته فنی (ASHRAE) عبارت های زیر را برای محلول برومیدلیتیم- آب پیشنهاد می کند: «محلول جاذب ضعیف» (Weak absorbent) محلولی است که مبرد را در محفظه جاذب به خود گرفته در کمترین درجه تمایل به جذب مبرد قرار دارد. «محلول جاذب قوی»(strong absorbent) محلولی است که مبرد را در ژنراتور از دست داده بنابراین تمایل زیادی به جذب مبرد دارد.

5-1-1- کاربردها- ماشین جذبی در مقیاس تجارتی

دستگاه های جذبی که هم اکنون در دنیا ساخته می شوند عموما آب- خنک             (Water - cooled) هستند و از آب و برومیدلیتیم که آب نقش مبرد را دارد استفاده می کنند و یا هوا خنک هستند(Air - cooled) و از آب و آمونیاک که آمونیاک نقش مبرد را ایفا می کند کمک می گیرند. این دستگاه ها غالبا برای تهویه مطبوع هستند. شکل (8-1) یک سرماساز جذبی آب- برومیدلیتیم با ظرفیت بالا را نشان می دهد.[6]

شکل (8-1): دیاگرام اجزا و نمودار جریان ها برای یک سرما ساز جذبی

 از ماشین جذبی در ظرفیت های پایین هم استفاده می شود. شکل (9-1) نمایی از یک سیکل برومیدلیتیم- آب با گرمایش مستقیم (Direct - fired) است که برای گرما و سرماسازی به کار  می رود. همچنین شکل (10-1) یک سیکل برومیدلیتیم و آب در تناژکم برای ایجاد سرما به وسیله نور خورشید را نشان می دهد. [5]

     

شکل (10-1): دیاگرام سیکل آب- برمید لیتیم با پوسته عمودی برای سرمایش خورشیدی

  

شکل (9-1): دیاگرام سیکل آب-برمیدلیتیم با گرمایش مستقیم

  

 

 

 

در شکل (11-1) دیاگرام چیلر آب- آمونیاک با گرمایش مستقیم و کندانسور هوایی را می بینید.[5]

 

 

 

 

 

 

شکل (11-1) دیاگرام چیلر هوا خنک با گرمایش مستقیم که با آب و آمونیاک کار می کند.

 علاوه بر این ها، دستگاه جذبی آب- آمونیاک در کاربردهای صنعتی و با ظرفیت زیاد که نیاز به دماهای پایین برای انجام فرایند خود دارند به کار گرفته شده است.[5]

2-1- انواع ماشینهای جذبی و تفاوت های آنها

در اینجا ماشینهای جذبی از 4 جهت دسته بندی شده اند: از جهت جفت مبرد- جاذب(Absorbent - refrigerant pair) ، از جهت روش گرمایش، از جهت طبقه‌های ژنراتور و از جهت روش خنک کردن که مورد آخر در فصل دوم بررسی می شود.

1-2-1- جفت مبرد- جاذب(7)

دو ماده ای که جفت مبرد- جاذب را می سازند باید نیازهای زیر را برآورند تا برای تبرید جذبی مناسب باشند:

1- نبودن فاز جامد: جفت مبرد- جاذب نباید در محدوده ترکیب شدن و دمایی که تحت آن قرار می گیرند، تشکیل فاز جامد بدهند. اگر جامد تشکیل شود، می توان پیشگویی کرد که جریان سیال متوقف شده دستگاه از کار بیفتد.

2- نسبت فرار بودن: مبرد باید آنقدر فرار باشد که بتواند به راحتی از محلول جاذب جدا شود. در غیر اینصورت محدودیت های قیمت و گرمایش می تواند مانع از عمل جدایی شوند.

3- تمایل به ترکیب: محلول جاذب باید در شرایط جذب شدن مبرد تمایل زیادی به ترکیب شدن با آن داشته باشد. این تمایل به ترکیب (1) سبب می شود که مقدار محلول جاذب در گردش و در نتیجه تلف شدن انرژی حرارتی در اثر ازدست رفتن گرمای محسوس کاهش یابد و (2) ابعاد مبدل حرارتی که گرما را از محلول جاذب به مخلوط جاذب- مبرد در سیکل واقعی انتقال می دهد را کم خواهد کرد. محاسبات نشان داده اند که میل ترکیبی زیاد ضررهایی را به دنبال خواهد داشت. این خاصیت در ارتباط با گرمای جدا شدن است و با افزایش آن گرمای جدا شدن زیاد می شود. در نتیجه گرمای بیشتری در ژنراتور برای جدا سازی جاذب از مبرد لازم است.

4- فشار: فشارهای کارکرد ماشین که بیشتر به وسیله خواص فیزیکی مبرد دیکته می شوند باید معقول باشند. فشارهای بالا، لزوم استفاده از دستگاهی با دیوارهای ضخیم را می طلبد و توان الکتریکی قابل توجهی برای پمپ کردن سیال ها از فشار پایین به فشار بالا لازم خواهد بود.

فشارهای کم (خلاء) استفاده از دستگاه با حجم بالا را الزامی می کند و ابزارهای ویژه ای برای کاهش افت فشار در جریان بخار مبرد لازم است.

 

فهرست مطالب

عنوان                                                                        صفحه

 

فصل اول- آشنایی

1-1- ماشین جذبی و کاربردهای آن................ 2

2-1-1- مفاهیم و اصول....................... 2

3-1-1- فرایندهای ترمودینامیکی در سیکل جذبی. 6

4-1-1- فشارهای بالا و پایین ماشین........... 10

5-1-1- یک قرارداد ......................... 10

6-1-1- کاربردها: ماشین جذبی در مقیاس تجارتی 10

2-1- انواع ماشینهای جذبی و تفاوت های آنها..... 13

1-2-1- جفت مبرد- جاذب...................... 13

2-2-1- روش های مختلف گرمایش................ 16

3-2-1- طبقه های ژنراتور.................... 18

4-2-1- ماشین جذبی برای گرمایش و سرمایش .... 19

3-1- اهداف این تحقیق.......................... 21

1-3-1- ماشین جذبی درمقایسه با ماشین تراکمی. 21

2-3-1- محلول آب- برومید لیتیم در مقایسه با امونیاک – آب.............................................. 22

3-3-1- سیستم هوا خنک در مقایسه با آب خنک... 23

4-3-1- استفاده مستقیم از گاز شهری در مقایسه با منابع دیگر نظیر بخار داغ و انرژی خورشیدی......................... 24

5-3-1- ظرفیت دستگاه........................ 25

4-1 -مراجع.................................... 26

فصل دوم- ترمودینامیک سیکل

1-2- روش های مختلف خنک کن..................... 28

1-1-2- خنک کردن با آب...................... 28

2-1-2- خنک کردن با هوا..................... 28


عنوان                                                                        صفحه

 

3-1-2- خنک کردن تبخیری..................... 29

2-2- طرح مناسب بهمراه مدل فیزیکی و دیاگرام جریان 30

3-2- پیش فرض ها و داده های ورودی.............. 36

4-2- خواص ترمودینامیکی و ترموفیزیکی نقاط...... 41

5-2- ضریب عملکرد.............................. 45

1-5-2- تعریف کلی ............................. 45

2-5-2- ضریب عملکرد ماشین جذبی ................ 47

3-5-2- ضریب عملکرد اصلاح شده................ 50

6-2- مراجع.................................... 54

فصل سوم- بررسی اواپراتور

1-3- مقدمه.................................... 56

2-3- اواپراتور پاششی.......................... 57

3-3- روشی برای تخمین طول لوله در اواپراتور.... 58

1-3-3- انتقال حرارت........................ 58

2-3-3- ضریب انتقال حرارت سمت مایع سرد شده.. 59

3-3-3- ضریب انتقال حرارت سمت مبرد.......... 60

4-3- تبخیر لایه ای............................. 61

5-3- روش بررسی اواپراتور...................... 61

6-3- روش محاسبات.............................. 62

1-6-3- آب خنک شونده ....................... 62

2-6-3- محاسبات داخل لوله................... 63

3-6-3- محاسبات برای دیواره لوله............ 65

4-6-3- محاسبات خارج لوله................... 66

5-6-3- انتقال حرارت در اواپراتور........... 67

6-6-3- ضریب انتقال حرارت کلی............... 68

7-6-3- حل نهایی و محاسبه طول لوله.......... 69


عنوان                                                                        صفحه

 

7-3- مراجع.................................... 69

فصل چهارم بررسی کندانسور

1-4- مقدمه.................................... 71

2-4- توضیح.................................... 72

3-4- انتقال حرارت............................. 72

4-4- محدوده های تغییرات در شرایط محاسبه ...... 73

5-4- بیان پارامترها........................... 76

6-4- ناحیه خنک شدن فاز بخار .................. 76

7-4- محاسبه ضریب انتقال حرارت سطح لوله با هوا. 77

8-4- تعاریف و معادلات برای ضریب انتقال حرارت کلی 79

9-4- تقطیر لایه ای داخل لوله................... 80

10-4- افت فشار................................ 82

11-4- چگونگی محاسبات.......................... 83

12-4- مراجع................................... 84

فصل پنجم- بررسی محفظه جاذب

1-5- مقدمه.................................... 86

2-5- کریستالیزاسیون........................... 86

3-5- مقایسه سه نوع جاذب از نظر کارکرد آنها در سیکل هوا- خنک جذبی...................................... 88

1-3-5- توضیحات ضروری....................... 88

2-3-5- محاسبات مشابه برای هر سه سیکل....... 89

3-3-5- مدل EISA............................. 91

4-3-5- محاسبات مدل EISA..................... 94

5-3-5- مدل KUROSAWA........................ 95

6-3-5- مدل تلفیقی.......................... 99

4-5- طراحی جذب................................ 103

عنوان                                                                        صفحه

 

5-5- مراجع.................................... 104

فصل ششم- ژنراتور106

1-6- مقدمه.................................... 106

2-6- مدل فیزیکی .............................. 107

3-6- ضریب انتقال حرارت سمت آب- برومیلیتیم..... 108

4-6- آنالیز احتراق سوخت....................... 110

5-6- محاسبات احتراق سوخت...................... 112

6-6- انتقال حرارت در سمت گاز.................. 113

1-6-6- انتقال حرارت جابجایی ............... 114

2-6-6- انتقال حرارت تابش................... 116

3-6-6- محاسبه سطح لوله..................... 120

7-6- مدلهای عملی........................... 120

8-6- مراجع.................................... 125

نتیجه گیری کلی................................ 126

 

 


دانلود با لینک مستقیم


مقاله ساخت و بهره برداری ازیک سیستم سرمایش جذبی

چیلر 45 ص

اختصاصی از فایل هلپ چیلر 45 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 47

 

فصل اول- آشنایی با چیلرهای جذبی

تقسیم بندی چیلرها

چیلرها از جمله تجهیزات بسیار مهم در سرمایش هستند که به طور کلی می توان آنها را به دو دسته چیلرهای تراکمی و چیلرهای جذبی تقسیم کرد. به طور کلی چیلرهای تراکمی از انرژی الکتریکی و چیلرهای جذبی از انرژی حرارتی به عنوان منبع اصلی برای ایجاد سرمایش استفاده می کنند.

فناوری تبرید جذبی روشی عالی برای تهویه مطبوع مرکزی در تأسیساتی است که ظرفیت دیگ اضافی داشته و می توانند بخار یا آب داغ مورد نیاز برای راه اندازی چیلر را تأمین نمایند. چیلر های جذبی ظرفیت بین 25 تا 1200 تن برودتی را براحتی تأمین می کنند. البته قابل ذکر است که برخی از تولید کنندگان ژاپنی موفق شده اند چیلرهای جذبی با ظرفیت معادل5000 تن نیز تولید کنند. در سیستمهای جذبی غالباً از آب به عنوان مبرد استفاده می شود. گرمای مورد نیاز برای کارکرد این چیلرها به طور مستقیم از گاز طبیعی یا گازوئیل تأمین می گردد. منابع غیر مستقیم گرما در چیلرهای جذبی عبارتند از آب داغ بخار پر فشار و کم فشار. بر این اساس تولید کنندگان مختلف در جهان سه نوع اصلی چیلر جذبی ارائه می نمایند که عبارتند از : شعله مستقیم ، بخار و آب داغ.

در یک تقسیم بندی عمومی می توان چیلرهای جذبی را در دو دسته چیلرهای جذبی آب و آمونیاک و چیلرهای جذبی لیتیوم بروماید و آب طبقه بندی نمود . در واقع در هر سیکل تبرید جذبی یک سیال جاذب و یک سیال مبرد وجود دارد که تقسیم بندی فوق بر این مبنا انجام شده است. در سیستم آب و آمونیاک ، سیال مبرد آمونیاک وسیال جاذب آب است. در سیستم لیتیوم بروماید و آب ، سیال مبرد آب و سیال جاذب ، محلول لیتیوم بروماید است.

علاوه بر زوج مبرد و جاذب های ذکر شده ، در بعضی سیکل های تبرید جذبی از زوجهای دیگری نیز استفاده می گردد که در جدول (1) آمده است.

 اما بر حسب اجزای سیستم هم می توان تقسیم بندی های دیگری ارائه کرد مثلاً می توان سیکل های تبرید جذبی را به سیکل های تبرید یک اثره ، دو اثره و سه اثره طبقه بندی کرد. امروزه سیکل های تبرید جذبی تک اثره و دو اثره در مقیاس بسیار وسیع و در اشکال متنوع ساخته می شوند و سیکل های سه اثره همچنان در دست مطالعه می باشند.

جدول (1) : زوج های مبرد و جاذب

جاذب

مبرد

نوع جاذب

LiBr 

H2O

هالید قلیایی (نمک)

LiClO3

H2O

هالید قلیایی (نمک)

CaCl2 

H2O

هالید قلیایی (نمک)

ZnCl2

H2O

هالید قلیایی (نمک)

ZnBr

H2O

هالید قلیایی (نمک)

H2SO4

H2O

اسید

H3PO4

H2O

اسید

هیدروکسیدهای قلیایی

H2O

باز

H2O

NH3

_

تیوسیانات های قلیایی

NH3

_

 اصطلاحات فنی رایج در چیلر جذبی

ژنراتور

ژنراتور معمولاً در محفظه بالایی چیلرهای جذبی قرار داشته و وظیفه تغلیظ محلول لیتیوم بروماید رقیق و جدا سازی آب مبرد را بر عهده دارد.

 جذب کننده

جذب کننده معمولاً در پوسته پایینی چیلرهای جذبی قرار داشته و وظیفه جذب بخار مبرد تولید شده در محفظه اواپراتور را بر عهده دارد.

 اواپراتور

اواپراتور معمولاً در پوسته پایین چیلرهای جذبی قرار می گیرد. مایع مبرد در اواپراتور به لحاظ فشار پایین محفظه (خلأ نسبی) تبخیر شده و باعث کاهش درجه حرارت آب سرد تهویه درون لوله های اواپراتور می گردد.

کندانسور

کندانسور معمولاً در پوسته های بالایی چیلرهای جذبی واقع شده است و وظیفه تقطیر مبرد تبخیر شده توسط ژنراتور را بر عهده دارد. بخار مبرد در برخورد با لوله های حاصل از آب برج ، تقطیر شده و به تشتک اواپراتور سرریز می شود.

 محلول جاذب

این محلول در سیکل های پروژه حاضر محلول لیتیوم بروماید و آب است.

 مایع مبرد


دانلود با لینک مستقیم


چیلر 45 ص

چیلر 45 ص

اختصاصی از فایل هلپ چیلر 45 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 47

 

فصل اول- آشنایی با چیلرهای جذبی

تقسیم بندی چیلرها

چیلرها از جمله تجهیزات بسیار مهم در سرمایش هستند که به طور کلی می توان آنها را به دو دسته چیلرهای تراکمی و چیلرهای جذبی تقسیم کرد. به طور کلی چیلرهای تراکمی از انرژی الکتریکی و چیلرهای جذبی از انرژی حرارتی به عنوان منبع اصلی برای ایجاد سرمایش استفاده می کنند.

فناوری تبرید جذبی روشی عالی برای تهویه مطبوع مرکزی در تأسیساتی است که ظرفیت دیگ اضافی داشته و می توانند بخار یا آب داغ مورد نیاز برای راه اندازی چیلر را تأمین نمایند. چیلر های جذبی ظرفیت بین 25 تا 1200 تن برودتی را براحتی تأمین می کنند. البته قابل ذکر است که برخی از تولید کنندگان ژاپنی موفق شده اند چیلرهای جذبی با ظرفیت معادل5000 تن نیز تولید کنند. در سیستمهای جذبی غالباً از آب به عنوان مبرد استفاده می شود. گرمای مورد نیاز برای کارکرد این چیلرها به طور مستقیم از گاز طبیعی یا گازوئیل تأمین می گردد. منابع غیر مستقیم گرما در چیلرهای جذبی عبارتند از آب داغ بخار پر فشار و کم فشار. بر این اساس تولید کنندگان مختلف در جهان سه نوع اصلی چیلر جذبی ارائه می نمایند که عبارتند از : شعله مستقیم ، بخار و آب داغ.

در یک تقسیم بندی عمومی می توان چیلرهای جذبی را در دو دسته چیلرهای جذبی آب و آمونیاک و چیلرهای جذبی لیتیوم بروماید و آب طبقه بندی نمود . در واقع در هر سیکل تبرید جذبی یک سیال جاذب و یک سیال مبرد وجود دارد که تقسیم بندی فوق بر این مبنا انجام شده است. در سیستم آب و آمونیاک ، سیال مبرد آمونیاک وسیال جاذب آب است. در سیستم لیتیوم بروماید و آب ، سیال مبرد آب و سیال جاذب ، محلول لیتیوم بروماید است.

علاوه بر زوج مبرد و جاذب های ذکر شده ، در بعضی سیکل های تبرید جذبی از زوجهای دیگری نیز استفاده می گردد که در جدول (1) آمده است.

 اما بر حسب اجزای سیستم هم می توان تقسیم بندی های دیگری ارائه کرد مثلاً می توان سیکل های تبرید جذبی را به سیکل های تبرید یک اثره ، دو اثره و سه اثره طبقه بندی کرد. امروزه سیکل های تبرید جذبی تک اثره و دو اثره در مقیاس بسیار وسیع و در اشکال متنوع ساخته می شوند و سیکل های سه اثره همچنان در دست مطالعه می باشند.

جدول (1) : زوج های مبرد و جاذب

جاذب

مبرد

نوع جاذب

LiBr 

H2O

هالید قلیایی (نمک)

LiClO3

H2O

هالید قلیایی (نمک)

CaCl2 

H2O

هالید قلیایی (نمک)

ZnCl2

H2O

هالید قلیایی (نمک)

ZnBr

H2O

هالید قلیایی (نمک)

H2SO4

H2O

اسید

H3PO4

H2O

اسید

هیدروکسیدهای قلیایی

H2O

باز

H2O

NH3

_

تیوسیانات های قلیایی

NH3

_

 اصطلاحات فنی رایج در چیلر جذبی

ژنراتور

ژنراتور معمولاً در محفظه بالایی چیلرهای جذبی قرار داشته و وظیفه تغلیظ محلول لیتیوم بروماید رقیق و جدا سازی آب مبرد را بر عهده دارد.

 جذب کننده

جذب کننده معمولاً در پوسته پایینی چیلرهای جذبی قرار داشته و وظیفه جذب بخار مبرد تولید شده در محفظه اواپراتور را بر عهده دارد.

 اواپراتور

اواپراتور معمولاً در پوسته پایین چیلرهای جذبی قرار می گیرد. مایع مبرد در اواپراتور به لحاظ فشار پایین محفظه (خلأ نسبی) تبخیر شده و باعث کاهش درجه حرارت آب سرد تهویه درون لوله های اواپراتور می گردد.

کندانسور

کندانسور معمولاً در پوسته های بالایی چیلرهای جذبی واقع شده است و وظیفه تقطیر مبرد تبخیر شده توسط ژنراتور را بر عهده دارد. بخار مبرد در برخورد با لوله های حاصل از آب برج ، تقطیر شده و به تشتک اواپراتور سرریز می شود.

 محلول جاذب

این محلول در سیکل های پروژه حاضر محلول لیتیوم بروماید و آب است.

 مایع مبرد


دانلود با لینک مستقیم


چیلر 45 ص

پروژه طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید. doc

اختصاصی از فایل هلپ پروژه طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید. doc دانلود با لینک مستقیم و پر سرعت .

پروژه طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید. doc


پروژه طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 135 صفحه

 

مقدمه:

به هر تحولی که درآن حرارت گرفته می شود تبرید می گویند. به شاخه ای از علم که در آن به کاهش و ثابت نگه داشتن دمای یک ماده یا فضا ، در دمایی پایین تر از دمای محیط  پرداخته می شود تبرید اطلاق می گردد. به بیان دیگر در تحول تبرید ، حرارت از جسم سرد شونده ای گرفته شده و به جسم دیگری که دمای کمتر از جسم سرد شونده دارد منتقل می گردد.

چون در این تحول حرارت گرفته شده از جسم سرد شونده با جسم دیگری منتقل می شود، لذا در تحول تبرید هم گرمایش و هم سرمایش وجود دارد وفقط نحوه استفاده از سیستم آنها را از یکدیگر متمایز می سازد.

 

فهرست مطالب:

بخش اول- سیستم تبرید جذبی      

چند تعریف      

تاثیر فشار روی دمای اشباع   

تبخیر       

مخلوط مایع وبخار  

تفطیر       

تبرید و سیستمهای تراکمی تبخیری       

مبردهای مایع       

سیکل تراکمی بخار       

کاربرد گاز به صورت مبرد  

تبرید با سیستم جذبی       

سیتم جذبی آب وآمونیاک  

سیستم جذبی تکمیل شده  

ویژگیهای آمونیاک به عنوان مبرد  

اجزاء سیستم      

خواص آمونیاک و کاربرد آن در صنعت      

طراحی سرد خانه ها      

روشهای انجماد       

سردخانه ها چگونه طراحی میشوند      

سرمایسش خورشیدی      

مشخصات سیکل تبرید جذبی آب و آمونیاک       

اواپراتورها      

کندانسورها      

بخش دوم – انرژی خورشیدی

پیشگفتار    

تاریخچه    

لزوم استفاده از انرژی خورشیدی  

طبیعت خورشید و تابش آن     

حرکت کره زمین و تغییرات تابش       

حل یک مثال مقدار تابش خورشیدی در مشهد    

طرح یک سیستم برای استفاده غیرمستقیم از انرژی خورشید   

انتخاب سیستم سیالاتی برای انتقال گرما     

کلکتورهای مسطح خورشیدی    

لوله ها و گذرگاه ها درکلکتورها    

انتخاب کلکتور و جزئیات سازه ای آن     

پیش بینی کارکرد یک کلکتور     

تعیین زاویه برخورد  کلکتور      

تجزیه وتحلیل  عمل کرد کلکتور ها   

مقدار کل تابش خورشیدی

انتخاب دیگ کمکی ومخزن ذخیره حرارت  

سیستمهای آبگرم خورشیدی برای سرمایش

سیستم های ذخیره گرما  

منابع و ما خذ  

جداول و پیوست ها       

 

منابع ومأخذ:

اصول تبرید طراحی و محاسبات سیستمهای سرد کننده مترجمان : مهندس اصغر حاج سقطی – مهندس سید احمد جعفری
حرارت مرکزی تهویه مطبوع تبرید ، دکتر بهمن ؟؟
تبرید و طراحی سیستمهای برودتی و سردخانه ، مولفین: دکتر حسن شریفی بیدگلی ، مهندس محمدرضا رجایی
انتقال حرارت تابش خورشیدی و کاربرد آن در ساختمان ، تالیف و ترجمه : دکتر سیروس آقانجفی ، مهندس علیرضا دهقانی
اصول و کاربرد انرژی خورشیدی ، تالیف : اصغر حاج قلی سقطی
محاسبات تاسیسات ساختمان ، ترجمه و تالیف مهندس سید مجتبی طباطبایی
مبانی انرژی خورشیدی دکتر عزت ا... آزاد


دانلود با لینک مستقیم


پروژه طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید. doc

دانلود پاورپوینت طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید

اختصاصی از فایل هلپ دانلود پاورپوینت طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید


دانلود پاورپوینت طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید
—در این پروژه به چگونگی کارکرد انرژی خورشیدی در طراحی یک سیکل تبرید جذبی  (با مبرد آمونیاک و آب به عنوان جذب) می پردازیم .
—گام اول تعیین مقدار حرارتی است که بایست برای تامیین بار برودتی مشخص (2 تن تبرید)  مورد نیاز سیستم تامیین شود
—انتخاب نوع کلکتورهای خورشیدی دمای کارکرد کلکتور ودمای عملکرد سیکل تبرید در سرمایش خورشیدی مشخص میشود.
—انتخاب، محاسبات و طراحی سیستم خورشیدی را براساس کارکرد سالیانه سردخانه سیکل تبرید در شهر مشهد و با در نظر گرفتن تامین حداقل 50 درصد از انرژی مصرفی طرح در هر یک از ماه های سال توسط سیستم خورشیدی، انجام شده است. یک دستگاه دیگ آب گرم از نوع گازسوز و منبع ذخیره حرارت جهت کمک به انرژی خورشیدی دریافتی وایجاد حرارت در روزهای ابری پیش بینی شده است.
—سیستم  جذبی تکمیل شده:

در سیستم جذبی مذکور می توان برای بالا بردن راندمان تغیییراتی داد. مثلاً با تقیلیل آبی که در اوپراتور جریان خواهد یافت ، راندمان را می توان بالا برد، کار دیگری که می توان برای بالا بردن راندمان نمود قراردادن یک مبدل حرارتی بین جذب کننده و ژنراتور می باشد .

 شکل (5-24) شمای یک سیستم چذبی تکمیل شده را نشان می دهد، که درآن یک رکتیفایر و

یک آنالیزور برای نقصان مقدار مایعی که احتمالاً وارد کندانسور خواهد شد در نظر گرفته شده

تبرید با سیستم جذبی:

ضریب عملکرد در سیستم های جذبی

نسبت حرارت مبادله شده در ژنراتور به سرمای تولید شده در اواپراتور ضریب عملکرد در سیستم های جذبی

تعریف میشود .

باید توجه کرد که ضریب عملکرد در سیکل جذبی با سیکل تراکمی کاملاً متفاوت است زیرا در سیکل جذبی حرارت مبادله شده در ژنراتور منظور شده در حالیکه در سیکل تراکمی کار کمپرسور منظور می گردد. انرژی که در اثر کار حاصل می شود معمولاً خیلی گرانتر از انرژی است که از حرارت بدست می آید.

در سیستم جذبی کار مکانیکی کمی لازم است ، زیرا به جای کمپرسور که کار مکانیکی زیادی انجام می دهد پمپ با کار مکانیکی صرفنظر کردن بکار رفته وکسب انرژی به صورت انرژی حرارتی از ژنراتور خواهد بود.

لزوم استفاده از انرژی خورشیدی:

نقش انرژی در اقتصاد جهانی با توجه به تحریم ها و جنگ های اخیر اهمیت موضوع انرژی را بیش از پیش نمایان کرد.

بسیاری از محققین به بررسی انرژی خورشیدی پرداخته اند و  آن را جایگزین مناسلی برای سوخت های فسیلی می دانند. ورود به دوره استفاده همگانی از انرژی خورشیدی مستلزم تحولات بیشتری در زمینه ساخت کلکتورهای خورشیدی می باشد .

از بین مشکلات زیادی که جوامع صنعتی امروزه با آن مواجه می باشد دو مشکل آلودگی محیط زیست و تحلیل منابع انرژی ارتباط مستقیم بیشتری با یکدیگر دارند. به عقیده برخی از دانشمندان تنها راه حل دو مشکل فوق استفاده از انرژی خورشیدی است خورشیدی که زندگی ما از بدو خلقت عالم و آدم همیشه بدان بستگی داشته وخواهد داشت.

با عنایت به اینکه ایران در مجموع کشوری است بسیار آفتابی و از نظر مقدار و دریافت انرژی خورشیدی در شمار بهترین کشورها محسوب میشود و اعمال سیاستهای بهینه سازی مصرف انرژی پایین آوردن مصرف فراورده های نفتی اهمیت خود را در ایران نیز نشان داده است . در این راستا انرژی خورشیدی میتواند نقش اساسی را ایفا کند.

طرح یک سیستم برای استفاده غیرمستقیم از انرژی خورشید:

کلکتورهای خورشیدی، شیشه های بزرگ و گسترده ای هستند که بر روی صفحه ای شیبدار قرار دارند و پس از هدایت گرما به وسیله یک سیال ( مایع یا هوا) به انبار، برای استفاده بعدی به محوطه دیگری جهت گرم شدن منتقل می گردند.

انتخاب سیستم سیالاتی برای انتقال گرما

نخستین تصیمی در این زمینه، استفاده ای یک سیال مناسب برای انتقال انرژی گرمایی می باشد. دو نوع سیستم پایه برای سیستم انتقال سیال وجود دارد: اولی کلکتورهای خورشیدی را به ذخیره کننده های انرژی گرمایی  خورشیدی ارتباط می دهد و دیگری گرما یا سرما را از مخزن به ساختمان تحویل می دهد. سیستم های ثانوی ممکن است که هر دو نوع را تواماً داشته باشند.

امروزه سیستم های مایعی مانند آب، محلول اتیلن، کلیگول در آب و روغن بیشترمورد استفاده می باشند. هوانیز گازی است که مورد استفاده قرار می گیرد.

اگر تامین سرما مورد نظر باشد، سیستم هوایی انتخاب نامناسبی در مقایسه با یک سیستم مایع است.

شامل 42 اسلاید powerpoint


دانلود با لینک مستقیم


دانلود پاورپوینت طراحی سیستم تبرید جذبی خورشیدی در مشهد برای ظرفیت 2 تن تبرید