مقدمه:
نظریه گراف شاخه ای از ریاضیات است که درباره ی اشیاء خاصی درریاضی به نام گراف بحث می کند. به صورت شهودی گراف نمودار یا دیاگرافی است شامل تعدادی راس که با یالهایی به هم متصل شده اند. تعریف دقیق تر گراف به این صورت است که گراف مجموعه ای از راس هاست که توسط خانواده ای از زوج های مرتب که همان یالهاست به هم مرتبط شده اند. یالها بر دو نوع ساده و جهت دار هستند که هر کدام در جای خود کاربرد بسیاری دارد. مثلا اگر صرفا اتصال دو نقطه مانند اتصال تهران و زنجان با کمک آزاد راه مد نظر شما باشد کافیست آن دو شهر را با دو نقطه نمایش داده و اتوبان مزبور را یالی ساده نمایش دهید. اما اگر بین دو شهر جاده ای یکطرفه وجود داشته باشد آنگاه لازمست تا شما با قرار دادن یالی جهت دار مسیر حرکت را در آن جاده مشخص کنید.
آغاز نظریه ی گراف به سده ی هجدهم بر می گردد. اویلر ریاضیدان بزرگ مفهوم گراف را برای حل مسئله ی پل های کونیگسربگ ابداع کرد، اما رشد و پویایی این نظریه عمدتا مربوط به نیم سده ی اخیر و با رشد علم داده ورزی (انفورماتیک) بوده است. مهمترین کاربرد گراف مدل سازی پدیده های گوناگون و بررسی بر روی آنهاست. با گراف می توان به راحتی یک نقشه بسیار بزرگ یا شبکه ای عظیم را درون یک ماتریس به نام ماتریس وقوع گراف ذخیره کرد و یا الگوریتم های مناسب مانند الگوریتم دایسترا یا الگوریتم کروسکال و.... را برروی آن اعمال نمود.
نظریه ی گراف یکی از پرکاربرد ترین نظریه ها در شاخه های مختلف علوم مهندسی (مانند عمران)، باستانشناسی (کشف محدوده ی یک تمدن) و هوش مصنوعی و.... است.
من در این تحقیق کاربرد گراف را در هوش مصنوعی که علم روز می باشد برگزیدم.
نظریهٔ مجموعهها
شالودهٔ بنیادین و سنگ اساسی بنای ریاضیات جدید است. تعریفهای دقیق جمیع مفاهیم ریاضی، مبتنی بر نظریه مجموعههاست. گذشته از این روشهای استنتاج ریاضی، با استفاده از ترکیبی از استدلالهای منطقی و مجموعه- نظری تنظیم شدهاند. زبان نظریه مجموعهها، زبان مشترکی است که ریاضیدانان منطقی در سراسر دنیا با آن صحبت کرده و آن را درک میکنند. چنان که اگر کسی بخواهد پیشرفتی در ریاضیات عالی یا کاربردهای عملی آن داشته باشد، باید مفاهیم اساسی و نتایج نظریه مجموعهها و زبانی که در آن بیان شدهاند، آشنا شود.
تاریخچه
نظریه مجموعهها در اواخر قرن نوزدهم به طور عمده توسط جرج کانتور بنیان گذاشته شد. زمانی که کانتور مفاهیم و استدلالهای جدید و متهورانه خود را منتشر کرد، اهمیت آنها تنها توسط تعداد کمی از ریاضیدانان بزرگ درک شد. اما این نظریه در توسعه بعدیاش، تقریباً در تمام شاخههای ریاضیات نفوذ کرد و تأثیری عمیق بر گسترش آنها داشت. بطوری که حتی باعث تغییر نظریههای تثبیت شده گردید و ریاضیدانان سعی کردند مفاهیم ریاضی را بر اساس نظریه مجموعهها تعریف کنند. به عنوان مثال میتوان از تعریف اعداد طبیعی توسط پئانو اشاره کرد. همچنین توسعه بعضی از نظامهای ریاضی، از قبیل توپولوژی، اساساً به ابزار نظریه مجموعهها وابسته است. از اینها مهمتر، نظریه مجموعهها نیرویی متحد کننده بدست داد که به تمام شاخههای ریاضیات مبنای مشترک و مفاهیم آنها،وضوح ودقتی تازه بخشیده است.
هنگامی که میخواهیم با مجموعهای آشنا شویم میتوانیم آنها را به سه صورت مورد بررسی قرار دهیم. مطالعه مجموعهها به طور کلی نیاز به آشنایی عمومی با آنها دارد که هر کس که میخواهد علوم پایه را مورد مطالعه قرار دهد باید این آشنایی را کسب کند، مطالعه مجموعهها به طور طبیعی و مطالعه مجموعهها به صورت اصل موضوعی. در نظریه مجموعهها دو واژه طبیعی و اصل موضوعی دو واژه متضاد هم میباشند.
نظریه طبیعی مجموعهها
مطالعه مجموعهها به صورتی طبیعی به عنوان نظریه طبیعی مجموعهها یا Naive set theory است و این همان نظریهای است که در آغاز پیدایش نظریه مجموعهها توسط جرج کانتور مطرح گردید. اما در ادامه این نظریه درگیر اشکالات و پارادکسهایی همچون پارادکس راسل شد، و به این ترتیب نیاز به یک تغییر در نظریه مجموعه ها احساس شد و به این ترتیب ریاضیدانانی چون ارنست زرملو سعی کردند نظریه مجموعهها را در قالب یک دستگاه اصل موضوعی ارایه کنند که منجر به ایجاد نظریه اصل موضوعی مجموعهها انجامید.
شامل 44 صفحه word
دانلود تحقیق کاربرد گراف درهوش مصنوعی