فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره حلقه ها در ریاضی

اختصاصی از فایل هلپ تحقیق درباره حلقه ها در ریاضی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 93

 

فصل دوم

2-1- حلقه و ایده آل :

تعریف : حلقه مجموعه ای است مانند R همراه با دو عمل دوتایی که معمولا با جمع و ضرب نشان می دهند به طوری که :

1 . ( R , + ) گروه آبلی است .

2 . به ازای هر R α , b , c (α b ) c = α ( b c ) . ( شرکت پذیر )

3 . . (α + b ) c = α c + b c , α ( b + c ) = α b + α c ( پخشی )

هرگاه علاوه بر این :

4 . اگر به ازای هر R α , b α b = b α گوییم حلقه تعویض پذیر است .

5 . هرگاه R شامل عنصری مانند 1 R باشد بطوری که : به ازای هر R α 1R . α = α . 1R = α آنگاه گوییم R یک حلقه تعویض پذیر یک دار است .

نکته : عنصر همانی جمعی حلقه عنصر صفر نام دارد و با 0 نمایش داده می شود .

تعریف : فرض کنید S , R حلقه و R → S : f یک نگاشت باشد در این صورت f را همومورفیسم ( یا همومورفیسم حلقه ای ) گوییم اگر و فقط اگر شرط های زیر برقرار باشند:

1 . به ازای هر R α . b f (α + b ) = f (α ) + f ( b ) ؛

2 . به ازای هر R α , b f (α b ) = f (α ) f ( b ) ؛

3 . f ( 1 R ) = 1 s

نکته : اگر f : A → B , g : B → C همومورفیسم حلقه ای باشند آنگاه ترکیبشان نیز همومورفیسم حلقه ای است .

تعریف : فرض کنید R یک حلقه تعویض پذیر باشد زیر مجموعه I از R را یک ایده آل می نامیم اگر شرط های زیر برقرار باشند :

1 . I زیر گروه جمعی R باشد .

2 . R r ، I i نتیجه بدهد R ir ؛

تعریف : فرض کنید R یک حلقه تعویض پذیر باشد . مقسوم علیه صفر R عضوی مانند R r است که به ازای آن عضوی مانند R y با شرط 0R ≠ r y .

تعریف : فرض کنید R حلقه تعویض پذیر باشد . در این صورت R را یک دامنه صحیح می گوییم اگر

1 . R حلقه صفر نباشد یعنی 0R ≠ 1R و

2 . 0R تنها مقسوم علیه صفر R باشد .

یا به عبارت دیگر اگر R α , b α b = 0 R آنگاه α = 0 R یا b = 0s .

لم 2- 1- 1 : اگر R دامنه صحیح باشد تنها مقسوم علیه صفر حلقه همان عضو صفر حلقه

است .

برهان : فرض کنید R α مقسوم علیه صفر R باشد آنگاه R b وجود دارد بطوری که α b = 0 و 0 ≠ b . چون R دامنه صحیح است لذا α = 0 یا b = 0 . ولی 0 ≠ b لذا باید α =0 . بنابراین تنها مقسوم علیه صفر α = 0 عضو صفر آن است .

تعریف : یک حلقه یکدار با خاصیت 0 R ≠ 1 R را که هر عنصر تا صفر آن یکه باشد حلقه بخشی نامیم .

تعریف : فرض کنید R حلقه تعویض پذیر باشد . عضور وارون پذیر ( یکه ) R عضوی چون R r است که به ازای آن عضوی مانند R u وجود داشته باشد بطوری که ru=1R .

تعریف : فرض کنید R حلقه تعویض پذیر باشد . می گوییم R میدان است اگر :

1 . R حلقه صفر نباشد یعنی 0R ≠ 1 R

2 . هر عضو ناصفر R وارون پذیر باشد

یا به عبارت دیگر هر حلقه بخشی تعویض پذیر را میدان گوییم .

نکته : هر میدان دامنه صحیح است ولی عکس این مطلب در صورت متناهی بودن حلقه برقرار است . ( قضیه 1- 6- 3 و 1- 6- 4 از مرجع [ 3 ] ) .

تعریف : فرض کنید S , R حلقه های تعویض پذیر بوده و f : R → S یک

همومورفیسم حلقه ای باشد در این صورت هسته f را که با ker f نشان می دهیم به صورت زیر تعریف می کنیم :

لم 2- 1- 2 : فرض کنید S , R حلقه های تعویض پذیر و f : R → S همومورفیسم حلقه ای باشد در این صورت k e r f = { 0 R } اگر و فقط اگر f یک به یک باشد .

برهان : فرض کنید R r , و به فرض ( ) f = ( r ) f . در این صورت

0 = ( ) f - ( r ) f = ( - r ) f لذا { 0 } = ker f - r . بنابراین = r . یعنی f یک به یک است . برعکس فرض کنید f یک به یک باشد و بفرض x عضو دلخواهی از ker f باشد در این صورت 0 s = ( x ) f . از طرفی چون 0 s = ( 0s ) f . بنابراین f ( x ) = 0 s از طرفی چون f ( 0 R ) = 0 s . بنابراین f ( x ) = f ( 0 R) و چون f یک به یک است لذا

x = 0R .

گزاره 2- 1- 1 : f ker ایده آلی از R است .

برهان : فرض کنید بنابراین داریم f ( β ) = 0 s و f (α ) = 0 2 . از طرفی می دانیم f (α + B ) = f (α ) + f ( β ) = 0 s + 0 s = 0 s لذا


دانلود با لینک مستقیم


تحقیق درباره حلقه ها در ریاضی

تحقیق درباره دنیای ریاضی

اختصاصی از فایل هلپ تحقیق درباره دنیای ریاضی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 44

 

تجزیه ی اعداد به عوامل اول

مقدمه

مجموعه اعداد اول زیر مجموعه‌ای از اعداد طبیعی است که هر کدام از عضوهای آن فقط دو مقسوم علیه مثبت دارند که یکی از مقسوم علیه‌ها 1 و دیگری خود آن عدد می‌باشد. با این تعریف معلوم می‌شود که عدد اول نیست، چون فقط یک مقسوم علیه دارد. مجموعه اعداد اولی که عدد طبیعی m بر آنها بخش‌پذیر باشد عاملهای اول m نامیده می‌شوند. هر عدد طبیعی بزرگتر از 1 را می‌توان به حاصلضرب عاملهای اول تجزیه کرد.

شرایط بخش پذیری اعداد طبیعی به چند عدد نخست مجموعه اعداد اول

بخش‌پذیری بر 2: شرط لازم برای آن که یک عدد بر 2 بخش‌پذیر باشد، آن است که رقم یکان آن زوج باشد مانند 30 ، 1996 ، 204.

بخش‌پذیری بر 3: شرط لازم برای آن که عددی بر 3 بخش‌پذیر باشد آن است که مجموع ارقام آن عدد بر 3 بخش پذیر باشد. مانند 192 (زیرا مجموع ارقام آنها برابر 12 می‌باشد).

بخش‌پذیری بر 5: شرط لازم برای آن که یک عدد بر 5 بخش‌پذیر باشد آن است که رقم یکان آن صفر یا 5 باشد، مانند 205 ، 410.

بخش‌پذیری بر 7: عددی بر 7 بخش‌پذیر است که اگر رقم اول سمت چپ آن را در 3 ضرب کرده و با رقم دوم سمت چپ جمع کنیم وحاصل را بر 7 تقسیم کنیم، سپس باقیمانده تقسیم را دوباره در 2 ضرب کرده و با رقم سوم از سمت چپ جمع و حاصل را بر 7 تقسیم کنیم و همین عملها را تا آخرین رقم ادامه دهیم، در پایان باقیمانده بر 7 تقسیم بر 7 برابر با صفر باشد.

بخش‌پذیری بر 11: عددی بر 11 بخش‌پذیر است که اختلاف مجموع ارقام مرتبه زوج (یکان ، صدگان ، ده هزارگان و ... ) با مجموع ارقام مرتبه فرد (دهگان ، هزارگان ، صدگان و ...) بر 11 بخش‌پذیر باشد.

در حالت m

عددی مانند m اول است اگر و تنها اگر m بر هیچ کدام از اعداد اول تابیشتر از جذر m بخش‌پذیر نباشد. برای تجزیه یک عدد به حاصلضرب عاملهای اول ، آن را به کوچکترین عدد اولی که بر آن بخش‌پذیر باشد تقسیم می‌کنیم و خارج قسمت را نیز بر کوچکترین عدد اولی که بر آن بخش پذیر باشد تقسیم می‌کنیم و این کار را تاجایی ادامه می‌دهیم که خارج قسمت یک باشد. در این صورت حاصلضرب مقسوم علیه‌ها ، حاصلضرب عاملهای اول عدد مورد نظر خواهد بود. مانند 45 = 22 + 32

کوچکترین مضرب مشترک دو عدد

کوچکترین مضرب مشترک دو عدد a و b عبارت است از کوچکترین عددی که بر هم بر a و هم بر b بخش‌پذیر باشد. برای پیدا کردن کوچکترین مضرب مشترک دو عدد b,a (ک.م.م) که آن را به صورت a,b نمایش می‌دهیم، ابتدا دو عدد a و b را به حاصلضرب عاملهای اول تجزیه می‌کنیم. سپس کوچکترین مضرب مشترک دو عدد عبارت است از حاصلضرب عاملهای مشترک و غیر مشترک با توان بیشتر که در تجزیه دو عدد موجود است. به عنوان مثال ک.م.م دو عدد 36 و45 برابر است با 22X32X5 یعنی 180 خواهد بود.

بزرگترین مقسوم علیه مشترک دو عدد

بزرگترین مقسوم علیه مشترک دو عدد a و b عبارت است از بزرگترین عددی که هم a و هم b بر آن بخش‌پذیر باشد. برای پیدا کردن بزرگترین مقسوم علیه مشترک دو عدد b,a را به حاصلضرب (ب.م.م) که آن را به صورت (a,b) نمایش می‌دهیم؛ ابتدا دو عدد a و b را به حاصلضرب عاملهای اول تجزیه می‌کنیم، سپس بزرگترین مقسوم علیه مشترک دو عدد عبارت است از حاصلضرب عاملهای مشترک دو عدد a و b با توان بیشتر که در تجزیه دو عدد موجود است. به عنوان مثال ب.م.م دو عدد 45 و 36 برابر با 32 یعنی 9 می‌باشد.

دو عدد متباین

دو عدد را نسبت به هم اول یا متباین گویند هر گاه ب.م.م آن دو عدد برابر با 1 باشد. برای مثال دو عدد 8 و 9 نسبت به هم اول هستند، زیرا 1=(9 و 8). بزرگترین مقسوم علیه مشترک n عدد نیز به همین صورت تعریف می‌شود. باید توجه داشت که در این حالت منظور از عاملهای مشترک ، اعداد اولی هستند که در تجزیه تمامی n عدد مشترک می‌باشد. برای هر دو عدد طبیعی a,b تساوی (a ,b).a,b=ab برقرار می‌باشد.

تعداد مقسوم علیه های مثبت یک عدد

در حالت کلی اگر عدد تجزیه به عوامل a به صورت P2α2X PnαnXP1α1 باشد، که در آن P1 ، Pn ، ... ، P2 اعداد اول متمایز می باشند، برای نوشتن یک مقسوم علیه از a می‌توانیم از عاملهای P1 به تعداد 0 و1 و......و α1 و از عاملهای P2 به تعداد 0 و 1و......و α2 و.... و بالاخره از عاملهای P1 به تعداد 0 و 1 و ... αn انتخاب کنیم که طبق اصل ضرب این عدد به تعداد (α1+1)X(α2+1)….(αn+1) مقسوم علیه خواهد داشت.

اصل ضرب

اگر از A1 به m1 ، A2 مسیر ، از A2 به m2 ، A3 مسیر و ... و از An به mn ، An+1 مسیر مستقل موجود باشد، آنگاه برای اینکه از A1 به An+1 برسیم، m1Xm2X...Xmn مسیر وجود خواهد داشت.

جذر

جذر یک عدد یعنی پیدا کردن ریشه آن عدد است. جذر nm برابر است با ریشه دوم nm.

انگاره گلدباخ

 انگاره‌ی گلدباخ (حدس گلدباخ) از جمله معروف‌ترین مسایل حل نشده‌ی ریاضیات می‌باشد.برای درک این مساله تنها کافیست با مفهوم اعداد اول آشنا باشید. این انگاره چنین است:هر عدد صحیح زوج بزرگ‌تر از 2 حاصل‌جمع دو عدد اول است.صورت معادل آن چنین است:هر عدد صحیح زوج بزرگ‌تر از 5 حاصل‌جمع سه عدد اول است.

 

تاریخچه

گلدباخ (1690 – 1764) به خاطر این حدس که آن را در سال 1742 در نامه‌ای به اویلر مطرح کرد، نامش در تاریخ ریاضیات باقی مانده است. او ملاحظه کرد در هر موردی که امتحان می‌کند، هر عدد زوج را (به جز 2 و 5) می‌توان به صورت مجموع سه عدد اول نوشت.اویلر حدس گلدباخ را تعمیم داد به طوری‌که هر عدد زوج بزرگ‌تر از 2 را می‌توان به صورت مجموع دو عدد اول نوشت. مثلاً 4=2+2 , 6=3+3 , 8=5+3 , 10=5+5 , 12=5+7 , 14=7+7 , 16=13+3 , 18=11+7 , 20=13+7 , … , 48 = 29 +19 , … , 100 = 97 + 3 , … گلدباخ از اویلر پرسید که آیا می‌تواند این مطلب را برای همه عددهای زوج ثابت کند و یا اینکه مثال نقضی برای آن بیابد؟ شواهد تجربی در تایید اینکه هر عدد زوج به این صورت قابل نمایش است، کاملاً قانع‌کننده است و هر کسی می‌تواند با امتحان کردن چند عدد زوج، این موضوع را تحقیق کند. منشأ دشواری در این است که عددهای اول بر حسب ضرب تعریف می‌شوند در حالی که این مسأله با جمع سروکار دارد. به طور کلی، اثبات رابطه بین ویژگیهای ضربی و جمعی اعداد صحیح کار مشکلی است.

 

تلاش‌ها برای اثبات

در سال 1931 اشنیرلمان (1905-1938) که در آن موقع یک ریاضیدان روس جوان و گمنام بود موفقیت مهمی در این زمینه به دست آورد که برای همه متخصصان غیرمنتظره و شگفت‌آور بود. او ثابت کرد هر عدد صحیح مثبت را می‌توان به صورت مجموع حداکثر 300000 عدد اول نمایش داد. گر چه این نتیجه در مقایسه با هدف اصلی یعنی اثبات انگاره‌ی گلدباخ مضحک به نظر می‌رسد، ولی این نخستین گام در آن جهت بود. این اثبات مستقیم و سازنده است، اما هیچ روش خاصی برای تجزیه یک عدد صحیح دلخواه به اعداد اول ارائه نمی‌کند.

بعدا وینوگرادوف ریاضیدان روس با استفاده از روشهای هاردی ، لیتلوود و همکار هندی برجسته آنها رامانوجان در نظریه تحلیلی اعداد ، موفق شد تعداد عددهای اول مورد لزوم را از 300000 به 4 کاهش دهد. این نتیجه به تعداد مطلوب در انگاره گلدباخ بسیار نزدیکتر است ولی تفاوت عمده‌ای بین حکم اشنیرلمان و حکم وینوگرادوف وجود دارد که شاید مهمتر از اختلاف میان 300000 و 4 باشد. قضیه وینوگرادوف فقط به ازای همه اعداد صحیح «به اندازه کافی بزرگ» ثابت شده است؛ به بیان دقیقتر، او ثابت کرد عدد صحیح N ای وجود دارد به طوری که هر عدد صحیح n>N را می‌توان به شکل مجموع حداکثر 4 عدد اول نشان داد. اثبات وینوگرادوف راهی برای براورد کردن N به ما نشان نمی‌دهد، و بر خلاف اثبات اشنیرلمان، اساساً غیرمستقیم و غیرسازنده است. در حقیقت، چیزی که وینوگرادوف ثابت کرد این است که فرض نامتناهی بودن تعداد عددهای صحیحی که قابل تجزیه به حداکثر 4 عدد اول نیستند، به نتیجه نامعقولی می‌انجامد. در اینجا با نمونه خوبی از تفاوت عمیق میان دو نوع اثبات، مستقیم و غیرمستقیم، رو به روییم.

در سال 1956 باروتسکین با نشان دادن اینکه عدد exp(exp(16/038))=n در قضیه وینوگرادف کافیست گام دیگری در این راه نهاد.

در 1919 ویگوبرون رویکرد متفاوتی با عنوان روش غربال مطرح کرد که تعمیمی از غربال اراتستن است. او ثابت کرد هر عدد صحیح زوجی که به قدر کافی بزرگ باشد ، مجموع دو عدد است که هر کدام از آنها حاصل‌ضرب حداکثر 9 عدد اول هستند.

در 1937 ریچی ثابت کرد هر عدد زوجی که به قدر کافی بزرگ باشد مجموع دو عدد است که یکی حاصل‌ضرب حداکثر دو عدد اول و دیگری حاصل‌ضرب حداکثر 366 عدد اول است.

کُن با بهره‌گیری از ایده‌های ترکیبیاتی بوخشتاب ثابت کرد هر عدد زوج بقدر کافی بزرگ مجموع دو عدد است که هر یک حاصل‌ضرب حداکثر چهار عدد اول است.

در 1957 ، ونگ یوان با فرض درست بودن صورت تعمیم یافته فرضیه ریمان ثابت کرد هر عدد صحیح زوج بقدر کافی بزرگ ،‌مجموع یک عدد اول و حاصل‌ضرب حداکثر سه عدد اول است.

در 1948 آلفرد بدون استفاده از صورت تعمیم یافته فرضیه ریمان ثابت کرد که هر عدد زوج بقدر کافی بزرگ مجموع یک عدد اول و حاصل‌ضرب حداکثر c عدد اول است. ( c عددی ثابت و مجهول است).

در 1961 باربن نشان داد که c=9 برای این منظور کفایت می‌کند.

در 1962 ، پان چنگ دونگ این مقدار را به c=5 کاهش داد. مدت کوتاهی پس از آن باربن و پان ، مستقل از هم ،‌آن را به c=4 کاهش دادند.

در 1965 بوخشتاب این قضیه را به ازای c=3 کاهش داد.

در 1966 ، چن جینگ ران روش غربال را بهتر کرد و قضیه را به ازای c=2 ثابت کرد. یعنی

هر عدد صحیح زوجی که به قدر کافی بزرگ باشد ، مجموع یک عدد اول و حاصل‌ضرب حداکثر دو عدد اول است.

قضیه پاسکال

بلز پاسکال در سن 16 سالگی قضیه‌ای را مطرح نمود که تعمیمی از قضیه‌ی ساده‌تر دیگر منسوب به پاپوس اسکندرانی بود . صورت این قضیه چنین است : اضلاع متقابل یک شش‌ضلعی محاط در مقطعی مخروطی ، یکدیگر را در سه نقطه‌ی هم‌خط قطع می‌کنند. این قضیه در هندسه‌ی تصویری دوگان قضیه‌ی بریانشون می‌باشد.

 

درک قضیه پاسکال با بیان زیر ساده‌تر است: شش نقطه‌ی 1 ، 2 ، 3 ، 4 ،‌ 5 و 6 روی یک مقطع مخروطی داده شده‌اند. نقطه‌های متوالی را بوسیله‌ی خط‌های ( 2 ، 1 ) ، ( 3 ، 2 ) ، ( 4 ، 3 ) ، ( 5 ، 4 ) ، ( 6 ، 5 ) ، ( 1 ، 6 ) به هم وصل می‌کنیم. نقطه‌های تقاطع ( 2 ، 1 ) با ( 5 ، 4 ) ، ( 3 ، 2 ) با ( 2 ، 1 ) و ( 6 ، 5 ) با ( 1 ، 6 ) را مشخص می‌کنیم. در این صورت ، این سه نقطه بر یک خط راست واقعند.                           

 

قضیه‌ی بریانشون

قضیه: اگر ضلع‌ های یک شش ضلعی یک در میان از نقطه‌های ثابت P و Q بگذرند، آنگاه سه قطری که راس‌های متقابل شش ضلعی را به هم وصل می‌کنند، همرس هستند .

این قضیه دوگان ، قضیه پاسکال می‌باشد.

اثبات:می‌توان نقطه P و نقطه تقاطع دو تا از قطرها، مثلاً 14 و 36، را با یک عمل تصویر به بینهایت فرستاد. بنابر 36 | | 14 داریم a / b = u / v ولی x / y = a / b و u / v = r / s. پس x / y = r / s و 25 | | 36 ، بنابراین هر سه قطع موازی و در نتیجه همرس‌اند. این برای اثبات قضیه در حالت کلی کفایت می‌کند.


دانلود با لینک مستقیم


تحقیق درباره دنیای ریاضی

تحقیق درباره رابطه ریاضى باهوش

اختصاصی از فایل هلپ تحقیق درباره رابطه ریاضى باهوش دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

رابطه ریاضى باهوش

شیما شهرابىبا دکتر على آبکار استاد ریاضى و عضو هیأت علمى دانشکده علوم دانشگاه تهران در مورد ریاضى و کاربردش در زندگى و لذت حل مسأله گفت وگویى انجام داده ایم که مى خوانید:چرا ریاضى مى خوانیم؟ اصلاً ریاضى به چه دردى مى خورد؟علوم ریاضى در حالت کلى پایه تمام علوم مهندسى است. ریاضى مادر تمام علوم است و به عنوان علم دقیقه مطرح مى شود هر چه علوم دیگر به ریاضى نزدیک باشند مستدل تر و قطعى تر از علومى هستند که از ریاضى دور مى شوند. ممکن است در علوم اجتماعى نظریه هاى مختلفى داشته باشیم که همه نظریه ها بسته به موقعیت هاى گوناگون درست باشند ولى در ریاضى تنها یک نظریه داریم یا درست یا غلط. اغلب تئورى هاى ریاضى ریشه فیزیکى دارند و منشأ و پیدایش آنها در مسائل علمى بوده است.یعنى تمام فرمول هایى که در تمام این سالها کشف شده و شما زمانى خوانده اید و حالا تدریس مى کنید در مسائل علمى فیزیک و شیمى و اقتصادى کاربرد دارد؟خیر، گاه مى دانیم که این فرمول ها چه کاربردى دارد و منتها خودمان دیگر نمى توانیم به کاربردشان بپردازیم و گاهى هم فرمول را مى دانیم و آیندگان کاربردش را پیدا مى کنند. اما یک مسأله وجود دارد هیچ علمى مستقیماً به شکوفایى و بارورى نمى رسد مگر این که بخش هایى از ریاضى در آن به کار برده شده باشد. پس ریاضیدان غیر از لذتى که خودش مى برد از روى مفاهیم ریاضى باعث رشد جامعه و تکنولوژى مى شود.لذت؟بله، به یک ریاضیدان در حالت حل مسأله لذتى دست مى دهد و او را ارضا مى کند در فلسفه به این حالت لذت حل مسأله مى گویند که افراد دیگر این لذت را درک نمى کنند. این حالت در ریاضى مثل گل کردن طبع شعر شاعرى است که یکباره باعث مى شود شعر بگوید.تمام کاربردهایى که از ریاضى گفتید کاربردهایى بود که یک ریاضیدان در زندگى حرفه اى از ریاضى مى کند. آیا در زندگى اجتماعى هم از ریاضى استفاده مى شود؟ ریاضى در زندگى اجتماعى هم کاربرد دارد؟ البته، ما نباید از خودمان تعریف کنیم ولى کسى که ریاضیات مى خواند بهتر فکر مى کند و کسى که بهتر فکر مى کند بهتر زندگى مى کند.پس به خاطر این که بهتر فکر کنیم از اول دبستان تا سال آخر دبستان ریاضى مى خوانیم؟بله، ریاضى  کمک مى کند که بهتر فکر کنیم.براى بهتر فکر کردن راههاى بهترى هم وجود دارد. چرا شطرنج بازى نمى کنیم که فکرمان باز شود؟شطرنج حالت خاص دارد. البته بخشى از ریاضیات هم جنبه شطرنج و بازى دارد که به صورت فرم تعمیم گسترش پیدا مى کند و در علوم دیگر استفاده مى شود.یعنى ریاضى خواندن ما فقط به خاطر این است که بتوانیم بهتر فکر کنیم. یعنى من اگر انتگرال و مثلثات نمى خواندم نمى توانستم فکر کنم؟خیر، این طور نیست، ریاضى در زندگى روزمره به بالابردن قوه تفکر کمک مى کند. اما کاربرد و استفاده هاى دیگرى هم دارد. فرض کنید بخشى از


دانلود با لینک مستقیم


تحقیق درباره رابطه ریاضى باهوش

دانلود درس پژوهی ریاضی پنجم دبستان- مساحت دایره

اختصاصی از فایل هلپ دانلود درس پژوهی ریاضی پنجم دبستان- مساحت دایره دانلود با لینک مستقیم و پر سرعت .

دانلود درس پژوهی ریاضی پنجم دبستان- مساحت دایره


دانلود درس پژوهی ریاضی پنجم دبستان- مساحت دایره

در این بخش درس پژوهی ریاضی پنجم دبستان- مساحت دایره برای دانلود قرار داده شده است. این درس پژوهی با  فرمت WORD ، کاملاً قابل ویرایش و در 25 صفحه می‌باشد.لازم به ذکر است در تدوین این اقدام پژوهی رعایت تمامی فرمت های استاندارد و فاکتورها و چارت‌های مورد تایید آموزش و پرورش  در نظر گرفته شده است.


دانلود با لینک مستقیم


دانلود درس پژوهی ریاضی پنجم دبستان- مساحت دایره

دانلود درس پژوهی ریاضی پایه اول ابتدایی- لوحه سوم

اختصاصی از فایل هلپ دانلود درس پژوهی ریاضی پایه اول ابتدایی- لوحه سوم دانلود با لینک مستقیم و پر سرعت .

دانلود درس پژوهی ریاضی پایه اول ابتدایی- لوحه سوم


دانلود درس پژوهی ریاضی پایه اول ابتدایی- لوحه سوم

در این بخش  درس پژوهی ریاضی پایه اول ابتدایی- لوحه سوم  برای دانلود قرار داده شده است. این درس پژوهی با  فرمت WORD ، کاملاً قابل ویرایش و در 25 صفحه می‌باشد.لازم به ذکر است در تدوین این اقدام پژوهی رعایت تمامی فرمت های استاندارد و فاکتورها و چارت‌های مورد تایید آموزش و پرورش  در نظر گرفته شده است.


دانلود با لینک مستقیم


دانلود درس پژوهی ریاضی پایه اول ابتدایی- لوحه سوم