فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تعاریف و ویژگی‌های بنیادی توابع مثلثاتی

اختصاصی از فایل هلپ تعاریف و ویژگی‌های بنیادی توابع مثلثاتی دانلود با لینک مستقیم و پر سرعت .

تعاریف و ویژگی‌های بنیادی توابع مثلثاتی


تعاریف و ویژگی‌های بنیادی توابع مثلثاتی

مقالات  ریاضی  با فرمت           DOC           صفحات  27

تعاریف و ویژگی‌های بنیادی توابع مثلثاتی

 

  • اندازه کمان بر حسب رادیان، دایره مثلثاتی

 

دانش‌آموزان اولین چیزی را که در مطالعه توابع مثلثاتی باید بخاطر داشته باشند این است که شناسه‌های (متغیرهای) این توابع عبارت از اعداد حقیقی هستند. بررسی عباراتی نظیر sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهی اوقات به نظر دانشجویان دوره‌های پیشدانگاهی مشکل می‌رسد.

 

با ملاحظه توابع کمانی مفهوم تابع مثلثاتی نیز تعمیم داده می‌شود. در این بررسی دانش‌آموزان با کمانی‌هایی مواجه خواهند شد که اندازه آن‌ها ممکن است بر حسب هر عددی از درجات هم منفی و هم مثبت بیان شود. مرحله اساسی بعدی عبارت از این است که اندازه درجه (اندازه شصت قسمتی) به اندازه رادیان که اندازه‌ای معمولی‌تر است تبدیل می‌شود. در حقیقت تقسیم یک دور دایره به 360 قسمت (درجه) یک روش سنتی است. اندازه زاویه‌ها برحسب رادیان بر اندازه طول کمان‌های دایره وابسته است. در اینجا واحد اندازه‌گیری یک رادیان است که عبارت از اندازه یک زاویه مرکزی است. این زاویه به کمانی نگاه می‌کند که طول آن برابر شعاع همان دایره است. بدین ترتیب اندازه یک زاویه بر حسب رادیان عبارت از نسبت طول کمان مقابل به زاویه بر شعاع دایره‌ای است که زاویه مطروحه در آن یک زاویه مرکزی است. اندازه زاویه برحسب رادیان را اندازه دوار زاویه نیز می‌گویند. از آنجا که محیط دایره‌ای به شعاع واحد برابر  است از اینرو طول کمان  برابر  رادیان خواهد بود. در نتیجه  برابر  رادیان خواهد شد.

 

 

 

 

 

مثال1-1-1- کمانی به اندازه یک رادیان برابر چند درجه است؟

 

جواب: تناسب زیر را می‌نویسیم:

 

اگر  باشد آنگاه  یا  را خواهیم داشت.

 

مثال 2-1-1 کمانی به اندازه  رادیان برابر چند درجه است؟

 

حل: اگر  و  باشد آنگاه

 

 

 

2- دایره مثلثاتی. در ملاحظه اندازه یک کمان چه بر حسب درجه و چه برحسب رادیان آگاهی از جهت مسیر کمان از نقطه مبدا A1 به نقطه A2 حائز اهمیت است. مسیر کمان از نقطه مبدأ به نقطه مقصد در جهت خلاف حرکت عقربه‌های ساعت معمولاً مثبت در نظر گرفته می‌شود. در حالیکه در جهت حرکت عقربه‌های ساعت منفی منظور می‌شود.

 

معمولاً انتهای سمت راست قطر افقی دایره مثلثاتی به عنوان نقطه مبدأ اختیار می‌شود. نقطه مبدأ دایره دارای مختصات (1,0) خواهد بود. آن را بصورت A=A(1,0) نشان می‌دهیم. همچنین نقاط D,C,B از این دایره را بترتیب با مختصات B=(0,1)، C=(-1,0)، D=(0,-1) داریم.

 

دایره مثلثاتی را با S نشان می‌دهیم. طبق آنچه که ذکر شد چنین داریم:

 

 

 

 


دانلود با لینک مستقیم


تعاریف و ویژگی‌های بنیادی توابع مثلثاتی

تحقیق درمورد ریاضی سوال

اختصاصی از فایل هلپ تحقیق درمورد ریاضی سوال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 2

 

مسئله ای از نسبتهای مثلثاتی - 12-14-2007, 10:05 PM

 

مسئله ای از نسبتهای مثلثاتی


دانلود با لینک مستقیم


تحقیق درمورد ریاضی سوال

دانلود جزوه توابع مثلثاتی

اختصاصی از فایل هلپ دانلود جزوه توابع مثلثاتی دانلود با لینک مستقیم و پر سرعت .

دانلود جزوه توابع مثلثاتی


دانلود جزوه توابع مثلثاتی

شرح مختصر : در ریاضیات، منظور از توابع مثلثاتی شش تابع سینوس، کسینوس، تانژانت، کتانژانت، سکانت و کسکانت است که این توابع رابطهٔ میان زاویه‌ها و ضلع‌های یک مثلث قائم‌الزاویه را نشان می‌دهند و به همین دلیل توابع مثلثاتی نامیده می‌شوند. قدمت اولین متون به جا مانده از توابع مثلثاتی به دوران پیش از میلاد در مصر و یونان بازمی‌گردد. قضیهٔ تالس توسط تالس در سده ششم پیش از میلاد در مصر مطرح شد، همچنین از قضیهٔ فیثاغورس به عنوان سنگ بنای مثلثات یاد می‌شود. علاوه بر مصر و یونان، کشورهای دیگری از جمله هند، کشورهای اسلامی، چین و کشورهای اروپایی پیشبردهای مطرحی در زمینه مثلثات داشتند که می‌توان به افرادی چون خوارزمی، بتانی، ابوالوفا محمد بوزجانی، شن کو، گو شوجینگ و رتیکوس اشاره کرد.

تعاریف متفاوتی از این توابع بیان شده است، ساده‌ترین آن‌ها بر پایهٔ دایرهٔ واحد است که در این تعریف دایره‌ای با شعاع ۱ ترسیم می‌شود و شعاعی با زاویهٔ مشخص نسبت به محور افقی روی آن رسم شده و یک مثلث را تشکیل می‌دهد. هر یک از این توابع را می‌توان با پاره‌خطی در این دایره نشان داد. تعاریف دیگری از توابع مثلثاتی نیز بر پایهٔ انتگرال، سری توانی و معادلهٔ دیفرانسیل بیان شده است که هر یک از آن‌ها کاربرد خاص خود را دارند. برای نمونه در تعریف بر پایهٔ سری توانی، از سری مکلورن استفاده می‌شود که در محاسبهٔ مقدار تقریبی آن‌ها توابع مثلثاتی استفاده فراوان دارد.

فهرست :

ارتفاع مثلث

اصل نامساوی مثلثی

توابع کسینوس و سینوس دوره ای

تابع تانژانت دوره ای

اندازه زاویه

اندازه مساحت مثلث

اندازه نیمسازهای زاویه‎های برونی مثلث

تابع تانژانت

تابع سینوس

تابع کتانژانت

تابع کسینوس

تابع مثلثاتی

توابع معکوس مثلثاتی

حالتهای تشابه دو مثلث

حالتهای همنهشتی دو مثلث

حد توابع ساده مثلثاتی

خطهای همرس در مثلث

دایره‎های محاطی برونی مثلث

دایره محاطی داخلی مثلث

دایره محیطی مثلث


دانلود با لینک مستقیم


دانلود جزوه توابع مثلثاتی