فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فایل هلپ

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه بررسی امنیت در شبکه های حسگر بی سیم. doc

اختصاصی از فایل هلپ پروژه بررسی امنیت در شبکه های حسگر بی سیم. doc دانلود با لینک مستقیم و پر سرعت .

پروژه بررسی امنیت در شبکه های حسگر بی سیم. doc


پروژه رشته کامپیوتر با موضوع (( Security in Wireless Sensor Network)). doc

 

 

 

 

نوع فایل: word

قابل ویرایش 138 صفحه

 

چکیده:

شبکه های حسگر بیسیم نوع جدیدی از شبکههای بیسیم هستند که محدودیتهایی در قدرت پردازش، انرژی و حافظه دارند. در این شبکه‌‌ها به دلیل قابل اعتماد نبودن گره های حسگر و ماهیت نا‌امن کانالهای مخابراتی بی‌سیم، لزوم مباحث امنیتی بیش از بیش حائز اهمیت شده است.

اهداف امنیتی شبکه‌های حسگر بی‌سیم شامل محرمانه ماندن داده‌ها، تمامیت داده‌ها و تازگی داده‌ها می باشد.

شبکه های حسگر  گسترده می شود، مسائل مربوط به امنیت تبدیل به یک نگرانی مرکزی می شود. مجموعه ای از بلوک های ساختمان های امنیتی است که برای محیط های محدود یت منابع و ارتباطات بی سیم بهینه شده اند. SPINS (پروتکل امنیتی برای شبکه های حسگر) دارای دو بلوک ساختار امن است: SNEP (پروتکل رمزنگاری شبکه امن) و μTESLA (نسخه کوچک شده از زمان بندی شده، کارآمد ، جریان، پروتکل تحمل فقدان تصدیق شده). SNEP پایه اصلی امنیتی مهم زیر را فراهم می کند: محرمانه بودن داده ها، تصدیق داده دو قسمتی ، و تازگی داده. تصدیق  پخشی  کارآمد یک مکانیزم مهم برای شبکه های حسگر است. μTESLA یک پروتکل است که پخش تصدیق را برای محیط های با منابع به شدت محدود فراهم می کند. این پروتکل ها حتی در حداقل سخت افزارها  عملی هستند : عملکرد مجموعه پروتکل به راحتی مطابق با نرخ داده شبکه  تطبیق می یابد. مجموعه ای از بلوک های ساختمان امنیتی را می توان برای ساخت پروتکل های سطح بالاتر استفاده کرد. در طرح امنیتی ، سطوح امنیتی در رمزنگاری براساس کلید خصوصی ، از کلید های گروه استفاده می کند. برنامه ها و نرم افزاری سیستمی دسترسی به API های امنیتی به عنوان بخشی از میان افزاری که  توسط معماری شبکه های حسگر. تعریف شده  اند. از آنجا که داده ها شامل برخی از اطلاعات محرمانه است ، محتوای تمام پیام ها در شبکه رمزگذاری شده است.

 

مقدمه:

پیشرفت ‌‌‌های اخیر در زمینه الکترونیک و مخابرات بی‌سیم توانایی طراحی و ساخت حسگرهایی را با توان مصرفی پایین، اندازه کوچک، قیمت مناسب و کاربرد‌‌های گوناگون داده است. این حسگرهای کوچک که توانایی انجام اعمالی چون دریافت اطلاعات مختلف محیطی (بر اساس نوع حسگر)، پردازش و ارسال آن اطلاعات را دارند، موجب پیدایش ایدهای برای ایجاد و گسترش شبکههای موسوم به شبکه‌های بی‌سیم حسگر شده‌اند.

‌یک شبکه حسگر متشکل از تعداد زیادی گره‌های حسگری است که در یک محیط به طور گسترده پخش شده و به جمع‌آوری اطلاعات از محیط می‌پردازند. لزوماً مکان قرار گرفتن گره‌های حسگری، از ‌قبل‌تعیین‌شده و مشخص نیست. چنین خصوصیتی این امکان را فراهم می‌آورد که بتوانیم آنها را در مکان‌های خطرناک و یا غیرقابل دسترس رها کنیم.

از طرف دیگر این بدان معنی است که پروتکل‌ها و الگوریتم‌های شبکه‌های حسگری باید دارای توانایی‌های خودساماندهی باشند. دیگر خصوصیت‌های منحصر به فرد شبکه‌های حسگری، توانایی همکاری و هماهنگی بین گره‌های حسگری است. هر گره حسگر روی برد خود دارای یک پردازشگر است و به جای فرستادن تمامی اطلاعات خام به مرکز یا به گره‌ای که مسئول پردازش و نتیجه‌گیری اطلاعات است، ابتدا خود یک سری پردازش‌های اولیه و ساده را روی اطلاعاتی که به دست آورده است، انجام می‌دهد و سپس داده‌های نیمه پردازش شده را ارسال می‌کند.

با اینکه هر حسگر به تنهایی توانایی ناچیزی دارد، ترکیب صدها حسگر کوچک امکانات جدیدی را عرضه می‌کند. ‌در واقع قدرت شبکه‌های بی‌سیم حسگر در توانایی به‌کارگیری تعداد زیادی گره کوچک است که خود قادرند سرهم و سازماندهی شوند و در موارد متعددی چون مسیریابی هم‌زمان، نظارت بر شرایط محیطی، نظارت بر سلامت ساختارها یا تجهیزات یک سیستم به کار گرفته شوند.

گستره کاربری شبکه‌های بی‌سیم حسگر بسیار وسیع بوده و از کاربردهای کشاورزی، پزشکی ‌و صنعتی تا کاربردهای نظامی را شامل می‌شود. به عنوان مثال یکی از متداول‌ترین کاربردهای این تکنولوژی، نظارت بر یک محیط دور از دسترس است. مثلاً نشتی یک کارخانه شیمیایی در محیط وسیع کارخانه می‌تواند توسط صدها حسگر که به طور خودکار یک شبکه بی‌سیم را تشکیل می‌دهند، نظارت شده و در هنگام بروز نشت شیمیایی به سرعت به مرکز اطلاع داده شود.

در این سیستم‌ها بر خلاف سیستم‌های سیمی قدیمی، از یک سو هزینه‌های پیکربندی و آرایش شبکه کاسته می‌شود از سوی دیگر به جای نصب هزاران متر سیم فقط باید دستگاه‌های کوچکی را که تقریباً به اندازه یک سکه هستند را در نقاط مورد نظر قرار داد. شبکه به سادگی با اضافه کردن چند گره گسترش می‌یابد و نیازی به طراحی پیکربندی پیچیده نیست.

 

فهرست مطالب:

چکیده

مقدمه

فصل اول : معرفی شبکه‌های حسگر بی‌سیم

مفاهیم اولیه

ویژگی‌های عمومی یک شبکه حسگر

ساختار ارتباطی

مزیت‌ها

تاریخچة شبکه‌های حسگر بیسیم

چالش‌های شبکه حسگر

 کاربرد شبکه های بی سیم حسگر

روش‌های مسیریابی در شبکه‌های حسگربی‌سیم

مقایسه دو روش SPIN I و SPIN II

معماری  شبکه‌های حسگر بیسیم

معماری ارتباطی در شبکه‌های حسگر

اجزاء سخت افزاری

اجزای نرم‌افزاری

فصل دوم: امنیت شبکه های حسگر بی‌سیم

منشأ ضعف امنیتی در شبکه‌های بی‌سیم و خطرات معمول

 سه روش امنیتی در شبکه‌های بی‌سیم

ابزار های Sniff و Scan شبکه های محلی بی‌سیم

ابزار هایی که رمزنگاری WEP را می شکنند

ابزارشکستن احراز هویت ( Authentication )

حملات متداول شبکه های محلی بی سیم حسگر

تماس های تصادفی یا مغرضانه

موانع امنیتی سنسور

نیارمند یهای امنیتی

 تهدیدات کلی علیه شبکه‌های حسگر بی‌سیم

حملات گوناگون وراه های مقابله

تقسیم بندی داده های شبکه

طرح امنیت ارتباطات  

بهینه سازی

فصل سوم: چارچوب امنیت در شبکه های حسگر بی سیم

چارچوب امنیتی

4-1 مقدمه

4-2 فرضیه ها

 4-3 مدل تهدید

4-4 مدل اعتماد

4-5  توپولوژی (مکان شناسی)

4-6 طرح WSNSF

4-7 نتیجه گیری فصل

فصل چهارم: کنترل پروتکل در شبکه حسگر بی سیم

6-1 مقدمه

6-2 انگیزه هایی برای کنترل جابجایی

6-3  چالش هایی در کنترل جابجایی

6-4 راهنمایی هایی در طراحی

6-5  تعریف کنترل جابجایی

6-6 کنترل جابجایی و پشتۀ پروتکل ارتباط

فصل پنجم: نیازمندیهای امنیت در شبکه حسگر بی سیم

5-1 درخواست های امنیتی در شبکۀ گیرندۀ بی سیم

5-2  انواع حملات در شبکه های گیرندۀ بی سیم

5-3 پروتکل راهبردی DYMO عامل

5-4 خلاصه

فصل ششم: پروتکل های امنیتی برای شبکه حسگر بی سیم

7-1 مقدمه

7-2  پروتکل های امنیتی در شبکه های حسگر

7-3  امنیت ارتباط در شبکه های حسگر

4-7  خلاصه

مراجع

 

منابع و مأخذ:

[1]  L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem”, CM Trans. Programming Languages and Systems, vol. 4, no. 3, July 1982, pp. 382–401.

[2]  A. Perrig et al. , “SPINS: Security Protocols for Sensor Networks”, Wireless Networks J. , vol. 8, no. 5, Sept. 2002, pp. 521–34.

[3]  R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of Spread Spectrum Communications: ATutorial”, IEEE Trans. Commun. , vol. 30, no. 5, May 1982, pp. 855–84.

[4]  A. Wood and J. Stankovic, “Denial of Service in SensorNetworks”, IEEE Comp. , Oct. 2002, pp. 54–62.

[5]   J. Elson, L. Girod, and D. Estrin, “Fine-Grained NetworkTime Synchronization Using Reference Broadcasts”,Proc. 5th Symp  . Op. Sys. Design and Implementation,Dec. 2002.

[6] H. Chan, A. Perrig, and D. Song, “Random Key PredistributionSchemes for Sensor Networks”, IEEE Symp.Security and Privacy, May 2003.

[7] L. Eschenauer and V. D. Gligor, “A Key-ManagementScheme for Distributed Sensor Networks”, Proc. 9th ACMConf. Comp. and Commun. Security, Nov. 2002, pp. 41–47.

[8] J. Newsome et al. , “The Sybil Attack in Sensor Networks: Analysis and Defenses”, Proc. IEEE Int’l., Conf. Info. Processing in Sensor Networks, Apr. 2004.

[9] Sensor Ware Architecture: http://www. rsc.

  1. com/wireless_systems/sensorware

[10] S. Ganeriwal, S. Capkun, C.‐C. Han, and M. B. Srivastava. Secure time synchronization service for sensor networks. In WiSe ’05: Proceedings of the 4th ACM workshop on Wireless security, pages 97–106, New York, NY, USA, 2005. ACM Press.

[11] L. Lazos and R. Poovendran. Serloc: Robust localization for wireless sensor networks. ACM Trans. Sen. Netw., 1(1):73–100, 2005.

[12] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. Spins: security protocols for sensor networks. Wireless Networking, 8(5):521–534, 2002.

 [13] Akkaya, K. and Younis, M. (2003) A survey on routing protocols for wireless sensor networks. Elsevier Journal of Ad Hoc Netwoks, 3, pp. 325-349.

[14] Akyildiz, I.F., Su, W., Sankarasubramaniam Y. and Cayirci, E. (2002) Wireless

sensor networks: A survey. Computer Networks, 38 (4) March, pp. 393-422.

[15] Al-Karaki, J. and Kamal, A. (2003) Routing techniques in wireless sensor

networks: A survey. Lowa, USA, Lowa State University.

[16] Anderson, R., Chan, H. and Perrig, A. (2004) Key infection: smart trust for smart

  1. In Proceedings of the 12th IEEE International Conference on Network Protocols, Oct 5-8, 2004, Berlin, Germany.

[17] Anjum, F., Pandey, S. and Agrawal, P. (2005) Secure localization in sensor networks using transmission range variation. In Proceedings of IEEE MASS 2005 Workshop, November 7-11, 2005, Washington DC, USA.

[18] Axelsson, S. (2000) Intrusion detection systems: a survey and taxonomy. [online]

Research Report. 15 March 2000. Göteborg, Sweden, Department of Computer Engineering, Chalmers University of Technology. Available at    http://www.mnlab.cs.depaul.edu/seminar/spr2003/IDSSurvey.pdf [Accessed 16 June 2007]

[19] Bellare, M., Desai, A., Jokipii, E. and Rogaway, P. (1997) A concrete security treatment of symmetric encryption: Analysis of the DES modes of operation. In Proceedings of 38th Annual Symposium on Foundations of Computer Science (FOCS 97), October 19-22, 1997, Miami Beach, Florida, USA.

[20] Blom, R. (1985) An optimal class of symmetric key generation systems. Advances in cryptology. In Proceedings of EUROCRYPT 84, April 9-11, 1984, Paris, France. New York, USA, Springer Verlag.

[21] Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U. and Yung, M. (1992) Perfectly secure key distribution for dynamic conferences. In Proceedings of CRYPTO'92, August 16–20, 1992, Berlin, Springer Verlag, pp. 471–486.

[22] Braginsky, D. and Estrin, D. (2002) Rumor routing algorithm for sensor networks. In Proceedings of the FirstWorkshop on Sensor Networks and Applications (WSNA), October 2002, Atlanta, GA.

[23] Cam, H., Ozdemir, S., Muthuavinashiappan, D. and Nair, P. (2003) Energy efficient security protocol for wireless sensor networks. In Proceedings of 58th IEEE

Vehicular Technology Conference, Oct. 6-9, 2003, Orlando, Florida, USA.

[24] Carman, D.W., Krus, P.S. and Matt, B.J. (2000) Constraints and approaches for distributed sensor network security. Technical Report 00-010. Glenwood, Maryland, USA, NAI Labs, Network Associates.

[25] Capkun, S. and Hubaux, J.P., (2005) Secure positioning of wireless devices with application to sensor networks. In Proceedings of IEEE INFOCOM, 2005, Miami, Florida, USA.


دانلود با لینک مستقیم


پروژه بررسی امنیت در شبکه های حسگر بی سیم. doc

پروژه بررسی و مقایسه ی روشهای مختلف کنترل توپولوژی در شبکه های حسگر بی سیم با استفاده از اتاماتای یادگیر. doc

اختصاصی از فایل هلپ پروژه بررسی و مقایسه ی روشهای مختلف کنترل توپولوژی در شبکه های حسگر بی سیم با استفاده از اتاماتای یادگیر. doc دانلود با لینک مستقیم و پر سرعت .

پروژه بررسی و مقایسه ی روشهای مختلف کنترل توپولوژی در شبکه های حسگر بی سیم با استفاده از اتاماتای یادگیر. doc


پروژه بررسی و مقایسه ی روشهای مختلف کنترل توپولوژی در شبکه های حسگر بی سیم با استفاده از اتاماتای یادگیر. doc

 

 

 

 

نوع فایل: word

قابل ویرایش 71 صفحه

 

چکیده:

دراین تحقیق مبانی شبکه های بی سیم حسگر را بیان کرده ، سپس به معرفی پروتکل کنترل توپولوژی می پردازیم در ابتدا پروتکل مبتنی بر اتوماتای یادگیر به نام CLATC پیشنهاد شده است که در آن اتوماتای یادگیر هر گره در همکاری با اتوماتای یادگیر سلولی گره های همسایه، محدوده انتقال مناسب برای آن گره را انتخاب می نماید. و یک پروتکل کنترل توپولوژی مبتنی بر همسایه براساس اتوماتای یادگیر ارائه شده است که درآن گره ها که مجهز به اتوماتا شده اند سعی می کنند با تطبیق دادن اعمال انتخابی خود با شرایط مورد نیاز برای ایجادیک شبکه متصل و کارا از نظر انرژی، مناسبترین برد رادیویی برای هر گره را انتخاب کرده و درنهایت توپولوژی مناسبی را شکل دهند و از این طریق موجب کاهش مصرف انرژی شبکه در طول حیات آن شوند.

درادامه پروتکل کنترل توپولوژی مبتنی بر اتوماتای یادگیری به نام BLATC پیشنهاد شده است که در آن اتوماتای یادگیر هر سنسور، با استفاده از نتایج اتوماتاهای سنسورهای همسایه، محدوده انتقال مناسب را انتخاب می نماید.سپس این پروتکل ها را از دیدگاه های مختلف بررسی و مقایسه خواهیم کرد.

کلمات کلیدی:

کنترل توپولوژی،اتوماتای یادگیری،LBLATC، CLATC

 

مقدمه:

شبکه حسگر شبکه ای است متشکل از تعداد زیادی گره کوچک. در هر گره تعدادی حسگر و/ یا کارانداز وجود دارد. شبکه حسگر بشدت با محیط فیزیکی تعامل دارد. از طریق حسگرها اطلاعات محیط را گرفته و از طریق کار انداز ها واکنش نشان می دهد. ارتباط بین گره ها بصورت بی سیم است. هرگره بطور مستقل و بدون دخالت انسان کار می کند و نوعا از لحاظ فیزیکی بسیار کوچک است ودارای محدودیت هایی در قدرت پردازش, ظرفیت حافظه, منبع تغذیه, ... می باشد. این محدودیت ها مشکلاتی را بوجود می آورد که منشأ بسیاری از مباحث پژوهشی مطرح در این زمینه است. این شبکه از پشته پروتکلی شبکه های سنتی پیروی می کند ولی بخاطر محدودیت ها و تفاوتهای وابسته به کاربرد, پروتکل ها باید باز نویسی شوند. پیشرفتهای اخیر در فناوری ساخت مدارات مجتمع در اندازه های کوچک از یک سو و توسعه فناوری ارتباطات بی سیم از سوی دیگر زمینه ساز طراحی شبکه های حسگر بی سیم شده است.تفاوت اساسی این شبکه ها ارتباط آن با محیط و پدیده های فیزیکی است شبکه های سنتی ارتباط بین انسانها و پایگاه های اطلاعاتی را فراهم می کند در حالی که شبکه ی حسگر مستقیما با جهان فیزیکی در ارتباط است با استفاده از حسگرها محیط فیزیکی را مشاهده کرده, بر اساس مشاهدات خود تصمیم گیری نموده و عملیات مناسب را انجام می دهند. برخلاف شبکه های سنتی که همه منظوره اند شبکه های حسگر نوعا تک منظوره هستند. در صورتی که گره ها توانایی حرکت داشته باشند شبکه می تواند گروهی از رباتهای کوچک در نظر گرفته شود که با هم بصورت تیمی کار می کنند و جهت مقصد خاصی مثلا بازی فوتبال طراحی شده است.

 

فهرست مطالب:

1)مفاهیم مقدماتی  

1-1)تعدادی از تعاریف کلیدی

1-1-1)ساختمان گره          

1-1-2)ویژگی ها و کاربردها

1-1-3)پشته پروتکلی         

1-1-4)موضوعات مطرح    

1-2)بیان مسئله    

1-2-1)توپولوژی  

1-2-2)کنترل توپولوژی      

1-3)اهداف پایاننامه           

1-4)ساختار پایاننامه          

2)پروتکلهای کنترل توپولوژی          

2-1)پروتکل کنترل توپولوژی مبتنی بر اتوماتای یادگیر سلولی نامنظم برای شبکه های حسگر       

2-1-1)  اتوماتای یادگیر سلولی نامنظم

2-1-2)  تعریف مسئله       

2-1-3)پروتکل پیشنهادی (CLATC)    

2-1-4)ازمایش اول

2-2)ارائه یک پروتکل تطبیقی کنترل توپولوژی مبتنی بر همسایه و کارا از نظر انرژی براساس اتوماتای یادگیر در شبکه های حسگر بی  

2-2-1)کارهای انجام شده در زمینه کنترل توپولوژی        

2-2-2)اتوماتای یادگیر       

2-2-3)تعریف مسئله         

2-2-4)پروتکل پیشنهادی (LMNALA)

2-2-5)آزمایش اول 34

2-3)LBLATC پروتکل کنترل توپولوژی مبتنی بر محل با استفاده از اتوماتای یادگیر برای شبکه های حسگر بی سیم     

2-3-1)اتوماتای یادگیر       

2-3-2)محیط       

2-3-3)الگوریتم های یادگیری           

2-3-4)تعریف مسله          

2-3-5)پروتکل پیشنهادی (LBLATC)  

2-3-6)تنظیمات اعمال شده در شبیه سازی       

2-3-7)آزمایش اول

3)بررسی پروتکل پیشنهادی

3-1)بررسی پروتکلهای RAA_3L ،RAA_2L ،CLATC و حالت همگن (HOM)           

3-1-1)آزمایش اول

3-1-2)آزمایش دوم

3-1-3)آزمایش سوم           

3-2)بررسی پروتکل های RAA_3L، RAA_2L،LBLATC ،CLATC و حالت همگن (HOM)        

3-2-1)آزمایش اول

3-2-2)آزمایش دوم

3-2-3)آزمایش سوم           

3-3)بررسی پروتکلهای CLATC ، RAA_2L ، RAA_3L و حالت همگن (HOM)         

3-3-1)آزمایش اول

3-3-2)آزمایش دوم

3-3-3)آزمایش سوم           

4)نتیجه گیری      

4-1)مقایسه متوسط محدوده انتقال گره ها برای پروتکلهایLMNALA،CLATC،LBLATC 

4-2)مقایسه متوسط تعداد همسایه های گره ها برای پروتکلهای LMNALA،CLATC، LBLATC      

4-3)مقایسه متوسط انرژی باقیمانده گره ها برای پروتکلهایLMNALA،CLATC،LBLATC

4-4)نتیجه گیری  

5)منابع و مراجع   

 

منابع و مأخذ:

 [1] Akyildiz I. F., Su W., Sankarasubramaniam Y. and Cayircl E., “A survey on sensor networks”, IEEE Communication Magazine, Vol. 40, pp. 102-114,August 2002.

[2] Janakiram D., Venkateswarlu R. and Nitin S., ”A survey on programming languages, middleware and applications in wireless sensor networks”, IITM-CSEDOS- 2005-04, 2005.

[3] Estrin D., “Embedded Everywhere: A research agenda for network systems of embedded computers”, National Academy Press, 2001, Computer Science and Telecommunication Board (CSTB) Report, 2001.

[4] Wattenhofer R. and Zollinger A., “XTC: a practical topology control algorithm for ad-hoc networks”. Proceedings of the 18th International Parallel and Distributed Processing Symposium, pp. 2-16, 26-30 April 2004.

[5] Santi P., “Topology Control in Wireless Ad Hoc and Sensor Networks”, Wiley, 2005.

[6] Santi P., “Topology Control in Wireless Ad Hoc and Sensor Networks”, ACM Computer Survey, Vol. 37, No. 2, pp. 164-194, 2005.

[7] Rodoplu V. and Meng T. H, "Minimum energy mobile wireless networks", in: Proceedings of the IEEE Journal on Selected Areas in Communications, Vol.

17, pp. 1333-1344, 1999.          

[8] Li N., Hou J. and Sha L., “Design and analysis of an mst-based topology control algorithm”, in: Proceedings of the IEEE Infocom, Vol. 4, pp. 1195- 1206, May 2005.

[9] Wattenhofer R., Li L., Bahl P. and Wang Y., “Distributed topology control for power efficient operation in multihop wireless ad hoc networks”, in: Proceedings of the IEEE Infocom, Vol. 3, pp. 1388– 1397, 2001.

[10] Blough D., Leoncini M., Resta G. and Santi P., “The k-neighbors protocol for symmetric topology control in ad hoc networks”, in: Proceedings of the ACM MobiHoc 03, pp. 141–152, 2003.

[11] Wattenhofer R. and Zollinger A., “XTC: a practical topology control algorithm for ad-hoc networks”. in: Proceedings of the 18th International Parallel and Distributed Processing Symposium, pp. 2-16, 26-30 April 2004.

[12] Venuturumilli A. and Minai A. A., “Obtaining Robust Wireless Sensor Networks Throuh Self-Organization of Heterogeneous Connectivity”, Proceedings of the 2006 International Conference on Complex Systems (ICCS'06), Boston, MA, June 2006.

[13] S. Wolfram, "Cellular Automata", Los Alamos Science, vol. 9, pp. 2-21, Fall 1983.

[14] S. Wolfram, "Universality and complexity in cellular automata", Physica D, no. 10, pp. 1-35, January 1984.

[15] Narendra K. S. and Thathachar M. A. L, “Learning Automata: An Introduction”, Prentice Hall, 1989.

[16] Beigy H. and Meybodi M. R., "A Mathematical Framework for Cellular Learning Automata", Advances on Complex Systems, Vol. 7, No. 3, pp. 1- 25, 2004.

[17] Thathachar M. A. L. and Sastry P. S., “Varieties of Learning Automata: An Overview”, IEEE Transaction on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 32, No. 6, PP. 711-722, 2002.

[18] Esnaashari M. and Meybodi M. R., "Irregular Cellular Learning Automata and Its Application to Clustering in Sensor Networks", Proceedings of 15th Conference on Electrical Engineering (15th ICEE),

Volume on Communication, Telecommunication Research Center, Tehran, Iran, May 15-17, 2007.

[19] Stauffer D. and Aharony A., “Introduction to Percolation Theory”, London: Taylor & Francis, 1994.

[20] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[21] Heinzelman W., Chandrakasan A. and Balakrishnan H., “Energy Efficient Communication Protocol for Wireless Microsensor Networks”, Intl. Conf. on System Sciences, Hawaii, vol. 2, pp. 3005-3014 January 2000


دانلود با لینک مستقیم


پروژه بررسی و مقایسه ی روشهای مختلف کنترل توپولوژی در شبکه های حسگر بی سیم با استفاده از اتاماتای یادگیر. doc

مقاله زیست حسگر

اختصاصی از فایل هلپ مقاله زیست حسگر دانلود با لینک مستقیم و پر سرعت .

مقاله زیست حسگر


مقاله زیست حسگر

این محصول در قالب ورد و قابل ویرایش در 74 صفحه می باشد.

فهرست مطالب

مقدمه ........6

تعریف و توضیح اجمالی زیست حسگر و انواع آن ..7

عناصر بیولوژیکی ......... 18

عوامل مؤثر بر عملکرد ..... 33

کاربرد های مهم ........... 42

مثال های تجربی ......... 54

کاربرد های تجاری .......... 61

فهرست اشکال

شکل 1 ) طرح کلی یک زیست حسگر ......7

شکل 2 ) بینی به عنوان یک زیست حسگر ....8

شکل 3 ) الکترود اکسیژن کلارک ......10

شکل 4 ) نمایش ساده از زیست حسگر کلارک برای گلوکز ...........11

شکل 5 ) جدول1 : سنجش های متداول و فوری برای تشخیص بیماری ها .........17

شکل 6 ) نمودار : بستگی سرعت واکنش به غلظت سوبسترا برای یک واکنش که با آنزیم کاتالیز شده باشد ، درحالیکه غلظت آنزیم ثابت است.........20  

شکل 7 ) الکترود موز .....24

شکل 8 ) جدول2 : زیست حسگرهای مبتنی بر بافت و مواد مربوط به آن ..........24

شکل 9 ) جدول3 : مشخصات پاسخ زیست حسگرهای گلوتامین ........26

شکل 10 ) حسگر آمپرومتری.......27

شکل 11 ) اندازه گیری اواسترادیول 17- بتا با استفاده از یک الکترود حساس به یدید ....28 

چکیده

بهره گیری از هوشمندی مواد بیولوژیکی و تلفیق آن با دانش الکترونیک، منجر به پیدایش ابزارهای آنالاتیکی هوشمندی شده است که نام آن را زیست حسگر(bio-sensor) نهاده اند. ترنر (P.F Turner) از اولین کسانی است که تلاش نمود تا تعریف جامعی از زیست حسگر ارائه دهد. وی در مجله "بیوسنسور و          بیو الکترونیک"، زیست حسگرها را چنین تعریف نموده است: "زیست حسگرها ابزارهای آنالاتیکی هستند که از تلفیق یا ارتباط نزدیک یک ماده بیولوژیکی (بافت،ریزاندامگان ،اندامکها،یاخته ها، گیرنده ها، آنزیم ها، آنتی بادی ها، نوکلئیک اسیدها یا امثال آنها)، مشتق یک ماده بیولوژیکی یا ترکیبی با رفتار مشابه آن، از یک سو، و یک مبدل شیمی – فیزیکی یا یک ریز مبدل (که ممکن است نوع نوری ، الکترو شیمیایی، حرارت سنجی، پیزوالکتریکی یا مغناطیسی باشد)، از دیگر سو ، پدید می آیند. زیست حسگرها معمولاً چنان قابلیتی دارند که می توانند با بهره گیری از ویژگی عمل ماده بیولوژیک خود ، یک ترکیب یا گروهی از ترکیبات مشابه را شناسایی نموده و با  آن برهم کنش نمایند و نتیجه را به صورت یک پیام الکتریکی گزارش کنند.این پیام همواره با غلظت ترکیب مورد سنجش دارای تناسب کمّی است. بسته به تقاضای مصرف کننده ، زیست حسگر ممکن است یکبار مصرف بوده یا در مدت مدیدی از آن استفاده شود. این ابزارها در گستره ی وسیعی از کاربردهای آنالاتیکی از قبیل تشخیص های پزشکی و علوم آزمایشگاهی ، کنترل های زیست محیطی ، کنترل فرآیندهای صنعتی و سرانجام هشدار دهنده های ایمنی و دفاعی کارایی دارند. بیشترین بازار زیست حسگرها، مربوط به تشخیص های پزشکی است. آمار نشان می دهد که در سال 1990 بازار این محصول تنها در اروپا بالغ بر 4 میلیارد دلار بوده است. تا کنون کتاب های متعددی توسط ناشران معتبر بین المللی در معرفی زیست حسگرها نگاشته شده است، ولی غالب آنها به صورت مجموعه مقالات است و مطالب آنها از پیوستگی مناسب برخوردار نبوده و جامعیت لازم را ندارد.


دانلود با لینک مستقیم


مقاله زیست حسگر

حسگرهای بی سیم. doc

اختصاصی از فایل هلپ حسگرهای بی سیم. doc دانلود با لینک مستقیم و پر سرعت .

تحلیل حسگرهای بی سیم در 50 صفحه به صورت ورد و قابل ویرایش

فهرست مطالب:

چکیده 

1-1 مقدمه ای بر شبکه های حسگر بی سیم

1-2 تاریخچة شبکه های حسگر

1-3 معماری مجزای در حسگرهای بی سیم

1-4 معماری شبکه های حسگرهای بی سیم

1-5 شبکه توری  (mesh network) 10

1-6 زیگ بی (Zig Bee) 11

فصل دوم : کاربردهای شبکه های حسگر بی سیم APPLICATIONS of 13

Wireless Sensor Networks. 13

2-1 کاربردهای شبکه های حسگر بی سیم APPLICATIONS of Wireless Sensor Networks. 14

2-2 نظارت بر سازه های بهداشتی – سازه های هوشمند. 14

2-3 اتوماسیون ( خودکاری سازی ) صنعتی  industrial automation. 15

2-4 کاربردهای برجسته – نظارت سازه های شهری.. 15

2-5 پیشرفتهای آینده 16

2-6 شبکه های حسگر بی سیم. 17

2-7 معماری یک شبکه حسگر بی سیم Multi hop. 17

2-8 کاربردهای شبکه حسگر بی سیم. 18

2-9 نظارت بر محیط.. 19

2-10 مشخصه های شبکه حسگر بی سیم. 19

2-11 سخت‌افزار در شبکه حسگر بی سیم. 20

2-12 استانداردهای شبکه حسگر بی سیم. 20

2-13 نرم‌افزارهای شبکه حسگر بی سیم. 20

2-14 سیستم‌عامل های شبکه حسگر بی سیم. 21

2-15 میان افزار شبکه حسگر بی سیم. 22

2-16 زبان برنامه نویسی شبکه حسگر بی سیم. 22

2-17 الگوریتم شبکه حسگر بی سیم. 23

2-18 تجسم فکری داده ها 23

2-19 شبکه های حسگر بی سیم و کاربردهای آن. 24

2-20 خصوصیات مهم شبکه های حسگر بی سیم. 24

2-21 کاربردهای نظامی شبکه حسگر بی سیم. 26

2-22 کاربردهای محیطی شبکه حسگر بی سیم. 26

2-24 کاربردهای خانگی شبکه حسگر بی سیم. 27

2-25 کاربردهای تجاری شبکه حسگر بی سیم. 27

2-26 ویژگی‌های عمومی یک شبکه حسگر. 28

2-27 چالش های شبکه حسگر. 29

2-28 مزایای شبکه های حسگر بیسیم. 31

2-29 معرفی شبکه‌های بی‌سیم(WIFI) 31

فصل سوم : WiMAX چیست ؟. 33

3-1  WiMAX چیست ؟. 34

3-2 معرفی وایمکس... 34

3-3 تفاوت WiMAX  و Wi-Fi 34

3-4 ویژگیهای وایمکس... 35

3-5 محدوده پوشش وسیع. 36

3-6 استفاده در حال حرکت Mobility. 36

3-7 کاربردهای WIMAX. 36

3-8 طرز کار وایمکس... 37

3-9 پروتکل‌های شبکه‌های بی سیم. 37

3-10 پروتکل ۸۰۲٫۱۶. 38

3-11 مشخصات  IEEE ۸۰۲٫۱۶. 39

3-12 آینده WIMAX. 40

3-13 ویژگی های WIMAX. 42

3-14 کاربرد شبکه های بی سیم حسگر. 42

3-15 انواع شبکه های حسگر بیسیم. 43

3-16 اجزاء شبکه. 45

3-17 غوغای امواج. 45

3-18 نتیجه گیری از شبکه های حسگر بیسیم. 47

فهرست منابع   48


دانلود با لینک مستقیم


حسگرهای بی سیم. doc

دانلود پایان نامه شبکه های حسگر بیسیم

اختصاصی از فایل هلپ دانلود پایان نامه شبکه های حسگر بیسیم دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه شبکه های حسگر بیسیم


دانلود پایان نامه شبکه های حسگر بیسیم

یک شبکه حسگر متشکل از تعداد زیادی گره های حسگری است که در یک محیط به طور گسترده پخش شده و به جمع آوری اطلاعات از محیط می پردازند. ارتباط گره ها به صورت بی سیم است. هر گره به طور مستقل و بدون دخالت انسان کار می کند و نوعا از لحاظ فیزیکی بسیار کوچک است. لزوماً مکان قرار گرفتن گره های حسگری، از قبل تعیین شده و مشخص نیست. چنین خصوصیتی این امکان را فراهم می آورد که بتوانیم آنها را در مکان های خطرناک و یا غیرقابل دسترس رها کنیم.
از طرف دیگر این بدان معنی است که پروتکل ها و الگوریتم های شبکه های حسگری باید دارای توانایی های خودساماندهی باشند. دیگر خصوصیت های منحصر به فرد شبکه های حسگری، توانایی همکاری و هماهنگی بین گره های حسگری است. هر گره حسگر روی برد خود دارای یک پردازشگر است و به جای فرستادن تمامی اطلاعات خام به مرکز یا به گره ای که مسیول پردازش و نتیجه گیری اطلاعات است، ابتدا خود یک سری پردازش های اولیه و ساده را روی اطلاعاتی که به دست آورده است، انجام می دهد و سپس داده های نیمه پردازش شده را ارسال می کند.
حسگر های این شبکه می توانند به صورت دستی در مکانهای مورد نظر قرار گیرند و ثابت شوند و یا اینکه به صورت تصادفی در محل مورد نظر برای حس کردن پراکنده شوند. هدف اصلی در این شبکه ها بعد از برپایی در درجه اول جمع آوری اطلاعات و بعد از آن هر چه بیشتر بودن عمر شبکه است.
برای رسیدن به هدف دوم که طولانی تر کردن عمر شبکه است باید هر چه می توان توان مصرفی حسگر ها را پایین آورد زیرا عمر یک حسگر به مقدار باطری موجود آن بستگی دارد. یکی از راههای پایین آوردن توان مصرفی یک حسگر این است که مقدار محاسبات انجام شده در آن و مقدار ارتباطات آن را به حداقل برسانیم مخصوصا مقدار ارتباطات، زیرا این عمل بیشترین توان مصرفی را در یک حسگر دارد.
در بسیاری از موارد داده های جمع آوری شده توسط شبکه بدون دانستن مکان جمع آوری آنها هیچ فایده ای ندارند. به عنوان مثال داده های مربوط به وقوع آتش سوزی در جنگل یا عبور دشمن از مرز. از این رو در این موارد باید مکان داده ها ،که همان مکان حسگر است، را نیز بدانیم. بنابراین در شبکه هایی که مکان حسگر ها در آنها مشخص و ثابت نیست به مکانیزمهای مکان یابی نیاز داریم این شبکه ها از پشته پروتکلی شبکه های سنتی پیروی می کنند.
شبکه های سنتی ارتباط بین انسان ها و پایگاه های اطلاعاتی را فراهم می کنند . اما شبکه های حسگر مستقیما با جهان فیزیکی در ارتباط اند و با استفاده از حسگرها محیط فیزیکی را مشاهده کرده بر اساس مشاهدات خود تصمیم گیری کرده و عملیات مناسب را انجام می دهند . نام شبکه های حسگر بی سیم یک نام عمومی است برای انواع مختلف که به منظور خاص طراحی شده اند. بر خلاف شبکه های سنتی که همه منظوره اند شبکه های حسگر نوعا تک منظوره هستند وجود برخی ویژگی ها در شبکه حسگر/ کارانداز, آن را از سایر شبکه های سنتی و بی سیم متمایز می کند. از آن جمله عبارتند از:
    تنگناهای سخت افزاری شامل محدودیتهای اندازة فیزیکی, منبع انرژی, قدرت پردازش, ظرفیت حافظه
    تعداد بسیار زیاد گره ها
    چگالی بالا در توزیع گره ها در ناحیه عملیاتی
    وجود استعداد خرابی در گره ها
    تغییرات توپولوژی بصورت پویا و احیانا متناوب
    استفاده از روش پخش همگانی در ارتباط بین گره ها در مقابل ارتباط نقطه به نقطه
    داده محور بودن شبکه به این معنی که گره ها کد شناسایی ندارند
اگر در شبکه های حسگر گره ها توانایی حرکت داشته باشند شبکه حسگر می تواند گروهی از ربات های کوچک در نظر گرفته شود که با هم به صورت تیمی کار میکنند و جهت کار خاصی مانند بازی فوتبال و یا مبارزه با دشمن طراحی شده اند .  
با اینکه هر حسگر به تنهایی توانایی ناچیزی دارد، ترکیب صدها حسگر کوچک امکانات جدیدی را عرضه می کند. در واقع قدرت شبکه های بی سیم حسگر در توانایی به کارگیری تعداد زیادی گره کوچک است که خود قادرند سرهم و سازماندهی شوند و در موارد متعددی چون مسیریابی هم زمان، نظارت بر شرایط محیطی، نظارت بر سلامت ساختارها یا تجهیزات یک سیستم به کار گرفته شوند
گستره کاربری شبکه های بی سیم حسگر بسیار وسیع بوده و از کاربردهای کشاورزی، پزشکی و صنعتی تا کاربردهای نظامی را شامل می شود. به عنوان مثال یکی از متداول ترین کاربردهای این تکنولوژی، نظارت بر یک محیط دور از دسترس است. مثلاً نشتی یک کارخانه شیمیایی در محیط وسیع کارخانه می تواند توسط صدها حسگر که به طور خودکار یک شبکه بی سیم را تشکیل می دهند، نظارت شده و در هنگام بروز نشت شیمیایی به سرعت به مرکز اطلاع داده شود.
در این سیستم ها بر خلاف سیستم های سیمی قدیمی، از یک سو هزینه های پیکربندی و آرایش شبکه کاسته می شود از سوی دیگر به جای نصب هزاران متر سیم فقط باید دستگاه های کوچکی را که تقریباً به اندازه یک سکه هستند را در نقاط مورد نظر قرار داد. شبکه به سادگی با اضافه کردن چند گره گسترش می یابد و نیازی به طراحی پیکربندی پیچیده نیست. چند نمونه گره حسگر ساخته شده

        فصل اول
معرفی شبکه های بی سیم حسگر
 نگاهی به شبکه های بی سیم حسگر
توضیحات اولیه
ساختمان گره
ویژگی های عمومی یک شبکه حسگر
ساختار ارتباطی شبکه های حسگر
ساختار خودکار
ساختار نیمه خودکار
فاکتورهای طراحی
تحمل خرابی
قابلیت گسترش
هزینه تولید
محدودیت‌های سخت افزاری یک گره حسگر
توپولوژی شبکه
محیط کار
مصرف توان
کاربردهای شبکه¬های بی¬سیم حسگر
کاربردهای رهایی از سانحه
کنترل محیطی و نگاشت تنوع زیستی
سازه¬های هوشمند
مدیریت تاسیسات
نظارت ماشین آلات و نگهداری پیشگیرانه
کشاورزی دقیق
پزشکی و بهداشت
حمل و نقل
پردازش راه دور
پشته پروتکلی
انواع منبع¬ها و چاهک¬ها
شبکه¬های تک پرشی در مقابل شبکه¬های چند پرشی
انواع تحرک
پروتکل¬های مسیریابی برای شبکه¬های حسگر بی¬سیم
1-  پروتکل¬هایی بر مبنای داده
مسیریابی به روش سیل¬آسا و خبردهی
پروتکل¬های حسگر برای اطلاعات از طریق مذاکره
انتشار جهت¬دار
مسیریابی پخشی
2-  پروتکل¬های سلسله مراتبی
LEACH
PEGASIS
TEEN and APTEEN
3-  پروتکل¬های بر مبنای مکان
MECN
GAF
عیب های شبکه حسگر
روش های امنیتی در شبکه‌های بی سیم
WEP
SSID
MAC
فصل دوم
بهینه سازی
تئوری بهینه‌سازی
انواع مسائل بهینه سازی و تقسیم بندی آنها از دیدگاه های مختلف

بهینه سازی با سعی خطا، بهینه سازی با تابع
بهینه سازی تک بعدی و بهینه سازی چند بعدی
بهینه سازی پویا و بهینه سازی ایستا
بهینه سازی مقید و نا مقید
بهینه سازی پیوسته و یا گسسته
بهینه سازی تک معیاره و چند معیاره
برخی دیگر از  روش های بهینه سازی
1. روش مبتنی بر گرادیان
 روند کلی بهینه سازی گرادیانی
2. روش سیمپلکس
3. الگوریتم ژنتیک
 ویژگی‌های الگوریتم ژنتیک

4.Ant colony  
الگوریتم کلونی مورچه ها چیست؟
مزیتهای ACO
کاربردهای ACO
5- الگوریتم رقابت استعماری
شکل دهی امپراطوری‌های اولیه
سیاست جذب: حرکت مستعمره‌ها به سمت امپریالیست
انقلاب؛ تغییرات ناگهانی در موقعیت یک کشور
جابجایی موقعیت مستعمره و امپریالیست
رقابت استعماری
سقوط امپراطوری‌های ضعیف
شبه کد
کاربردها
فصل سوم
Particle Swarm Optimitation(PSO)
مقدمه
 (Particle Swarm Optimitation(PSO
توپولوژی های همسایگی PSO
تاریخچه خوشه بندی
تعریف خوشه بندی
تحلیل خوشه بندی
فرضیه موقعیت تصادفی
فرضیه برچسب تصادفی
فرضیه نمودارتصادفی
مراحل خوشه بندی
فرایندهای خوشه بندی
مطالعه تکنیک های خوشه بندی
کاربرد های ویژه PSO
تعریف کلاسیک خوشه بندی
معیار نزدیک بودن
کاربرد های خوشه بندی
تعداد خوشه ها
داده ها
تعداد ویژگی ها و مشخصات آنها
مقدار دهی اولیه برای Kmeans
Kmeans
Pso و کاربرد آن در خوشه بندی
رمز گذاری فضای سه بعدی در ذرات
کمی کردن کیفیت خوشه بندی
Pso و خوشه بندی(الگوریتم 1)
Pso و خوشه بندی در ناحیه بندی تصویر
Pso و خوشه بندی(الگوریتم 2)
ترکیب pso و kmeans برای خوشه بندی (الگوریتم هیبرید)
ترکیب Pso  و GA
فصل چهارم
بهینه سازی wsn  با استفاده از الگوریتم   بهینه سازی pso
نصب گره ها WSN بهینه
موقعیت یابی گره ثابت
موقعیت یابی گره متحرک
 VFCPSO
موقعیت یابی ایستگاه اصلی
تعیین محل گره در WSNها (شبکه های حسگر بی سیم)
تعیین موقعیت های گره های هدف
1) PSO تکراری
2) PSO بدون علامت
3) PSO با چهار علامت
خوشه بندی هشدار انرژی (EAC) در WSNها
خوشه بندی PSO
 MST-PSO
جمع آوری اطلاعات در WSNها
تخصیص نیروی انتقال مناسب
تعیین آستانه های مکانی- مناسب
تشکیل حسگر مناسب
نتیجه گیری
مراجع فارسی
مراجع انگلیسی

 

شامل 120 صفحه فایل word


دانلود با لینک مستقیم


دانلود پایان نامه شبکه های حسگر بیسیم